Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 1
Article Contents

CHEN Aoao, ZHANG Qin, LI Xianhai. Influence of Quicklime/Calcined Modified Electrolytic Manganese Slag on the Performance of Cement Concrete[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 155-161. doi: 10.13779/j.cnki.issn1001-0076.2023.07.003
Citation: CHEN Aoao, ZHANG Qin, LI Xianhai. Influence of Quicklime/Calcined Modified Electrolytic Manganese Slag on the Performance of Cement Concrete[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 155-161. doi: 10.13779/j.cnki.issn1001-0076.2023.07.003

Influence of Quicklime/Calcined Modified Electrolytic Manganese Slag on the Performance of Cement Concrete

More Information
  • Modification is an effective method to improve the cementitious activity of electrolytic manganese residue (EMR). The electrolytic manganese slag was modified by adding modifier (lime) or roasting method. The effects of different electrolytic manganese slag content and different roasting temperature on the mechanical properties of concrete were studied. The results showed that the compressive strength of the concrete prepared by the modified electrolytic manganese slag with the blending amount of 3%~10% and the electrolytic manganese slag calcined at 300~500 ℃were 40.1~43.5 MPa and 36.6~42.7 MPa respectively at the age of 28 d. When the content of modified electrolytic manganese slag was 10%, the compressive strength of concrete with electrolytic manganese slag modified by mixed quicklime and roasted at 450 ℃were 2 MPa and 5 MPa respectively, higher than that of concrete without electrolytic manganese slag. Under the condition of lime modification or calcination at 450 ℃ for 1 h, CaSO4·0.5H2O in electrolytic manganese slag was completely converted into CaSO4·2H2O and anhydrite, more C-S-H gel and AFt were generated in the prepared concrete and the mechanical properties of concrete were enhanced. It showed that CaSO4·2H2O and anhydrite could promote hydration and improve the early compressive strength and flexural strength of concrete.

  • 加载中
  • [1] LI J, SUN P, LI J X, et al. Synthesis of electrolytic manganese residue-fly ash based geopolymers with high compressive strength[J]. Construction and Building Materials, 2020, 248: 118489. doi: 10.1016/j.conbuildmat.2020.118489

    CrossRef Google Scholar

    [2] SHU J, WU H, CHEN M, et al. Fractional removal of manganese and ammonia nitrogen from electrolytic metal manganese residue leachate using carbonate and struvite precipitation[J]. Water Research, 2019, 153: 229−238. doi: 10.1016/j.watres.2018.12.044

    CrossRef Google Scholar

    [3] 李世龙, 魏作安, 路停, 等. 锰渣的工程性能试验研究[J]. 岩石力学与工程学报, 2020, 39(S2): 3706−3716.

    Google Scholar

    LI S L, WEI Z A, LU T, et al. Experimental study on engineering performance of manganese slag[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S2): 3706−3716.

    Google Scholar

    [4] LAN J, SUN Y, TIAN H, et al. Electrolytic manganese residue-based cement for manganese ore pit backfilling: Performance and mechanism[J]. Journal of Hazardous Materials, 2021, 411: 124941. doi: 10.1016/j.jhazmat.2020.124941

    CrossRef Google Scholar

    [5] ZHANG Y, LIU X, XU Y, et al. Preparation of road base material by utilizing electrolytic manganese residue based on Si-Al structure: mechanical properties and Mn2+ stabilization/solidification characterization[J]. Journal of Hazardous Materials, 2020, 390: 122188. doi: 10.1016/j.jhazmat.2020.122188

    CrossRef Google Scholar

    [6] 邹琴, 刘海燕, 谢华磊. 电解锰渣碱浸提硅工艺及动力学研究[J]. 矿冶工程, 2018, 38(2): 83−87. doi: 10.3969/j.issn.0253-6099.2018.02.020

    CrossRef Google Scholar

    ZOU Q, LIU H Y, XIE H L. Study on alkali leaching process and kinetics of silicon from electrolytic manganese residue[J]. Mining and Metallurgy Engineering, 2018, 38(2): 83−87. doi: 10.3969/j.issn.0253-6099.2018.02.020

    CrossRef Google Scholar

    [7] ZHANG Y, LIU X, XU Y, et al. Preparation and characterization of cement treated road base material utilizing electrolytic manganese residue[J]. Journal of Cleaner Production, 2019, 232: 980−992. doi: 10.1016/j.jclepro.2019.05.352

    CrossRef Google Scholar

    [8] 郭钟群, 赵奎, 余育新, 等. 矿物掺合料混凝土的力学性能试验研究[J]. 矿业工程, 2011, 9(3): 75−77. doi: 10.3969/j.issn.1671-8550.2011.03.031

    CrossRef Google Scholar

    GUO Z Q, ZHAO K, YU Y X, et al. Experimental study on mechanical properties of mineral admixture concrete[J]. Mining Engineering, 2011, 9(3): 75−77. doi: 10.3969/j.issn.1671-8550.2011.03.031

    CrossRef Google Scholar

    [9] 张强, 彭兵, 柴立元, 等. 电解锰渣体系中硫酸钙特性的研究[J]. 矿冶工程, 2010, 30(5): 70−73+78. doi: 10.3969/j.issn.0253-6099.2010.05.018

    CrossRef Google Scholar

    ZHANG Q, PENG B, CHAI L Y, et al. Study on the characteristics of calcium sulfate in electrolytic manganese slag system[J]. Mining and Metallurgy Engineering, 2010, 30(5): 70−73+78. doi: 10.3969/j.issn.0253-6099.2010.05.018

    CrossRef Google Scholar

    [10] YANG C, LV X, TIAN X, et al. An investigation on the use of electrolytic manganese residue as filler in sulfur concrete[J]. Construction and Building Materials, 2014, 73: 305−310. doi: 10.1016/j.conbuildmat.2014.09.046

    CrossRef Google Scholar

    [11] HOU P, QIAN J, WANG Z, et al. Production of quasi-sulfoaluminate cementitious materials with electrolytic manganese residue[J]. Cement and Concrete Composites, 2012, 34(2): 248−254. doi: 10.1016/j.cemconcomp.2011.10.003

    CrossRef Google Scholar

    [12] CHEN P, LIANG K, ZHAO Y, et al. Study on activation of steel slag by red mud and electrolytic manganese slag composite[J]. Concrete, 2018, 10: 67−73.

    Google Scholar

    [13] XUE F, WANG T, ZHOU M, et al. Self-solidification/stabilisation of electrolytic manganese residue: Mechanistic insights[J]. Construction and Building Materials, 2020, 255: 118971. doi: 10.1016/j.conbuildmat.2020.118971

    CrossRef Google Scholar

    [14] ZHOU C, WANG J, WANG N. Treating electrolytic manganese residue with alkaline additives for stabilizing manganese and removing ammonia[J]. Korean Journal of Chemical Engineering, 2013, 30(11): 2037−2042. doi: 10.1007/s11814-013-0159-8

    CrossRef Google Scholar

    [15] 侯贵华. 高温煅烧石膏硅酸盐水泥早期水化产物的研究[J]. 盐城工学院学报, 2001(1): 1−5+18.

    Google Scholar

    HOU G H. Study on the early hydration products of high temperature calcined gypsum Portland cement[J]. Journal of Yancheng Institute of Technology, 2001(1): 1−5+18.

    Google Scholar

    [16] 杨淑珍, 宋汉唐, 杨新亚. 煅烧硬石膏对硅酸盐水泥水化过程的影响[J]. 硅酸盐学报, 1997(2): 126−130.

    Google Scholar

    YANG S H, SONG HT, YANG X Y. Influence of calcined anhydrite on the hydration process of Portland cement[J]. Journal of Silicate, 1997(2): 126−130.

    Google Scholar

    [17] 杨建森. 混凝土中钙矾石作用的二重性[J]. 建筑材料学报, 2001(4): 362−366.

    Google Scholar

    YANG J S. Discussion on the duality of ettringite action in concrete[J]. Journal of Building Materials, 2001(4): 362−366.

    Google Scholar

    [18] XU Y, LIU X, ZHANG Y, et al. Investigation on sulfate activation of electrolytic manganese residue on early activity of blast furnace slag in cement-based cementitious material[J]. Construction and Building Materials, 2019, 229: 116831.1−116831.9.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(168) PDF downloads(29) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint