Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 6
Article Contents

LI Jinwen, KONG Lingyu, LV Jinfang, WEI Min. Reaction Mechanism and Research Progress of Organic Depressants on Talc in Flotation of Sulfide Ores[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 171-178. doi: 10.13779/j.cnki.issn1001-0076.2023.06.018
Citation: LI Jinwen, KONG Lingyu, LV Jinfang, WEI Min. Reaction Mechanism and Research Progress of Organic Depressants on Talc in Flotation of Sulfide Ores[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 171-178. doi: 10.13779/j.cnki.issn1001-0076.2023.06.018

Reaction Mechanism and Research Progress of Organic Depressants on Talc in Flotation of Sulfide Ores

More Information
  • Talc is a magnesium−containing silicate mineral, which is often associated with metal sulfide ore. In the flotation of sulfide ore, talc often floats into the concentrate due to its excellent natural floatability, resulting in excessive magnesium content in the concentrate, thus affecting the subsequent smelting. Organic reagents are of common talc depressants, which have the outstanding depressant effects on the talc. Therefore, the depressant mechanism and research progress of organic depressants on talc in the flotation process of sulfide ore were comprehensively summarized. It was pointed out that these depressants mainly form hydrogen bonds, chemical interactions or hydrophobic interactions between hydroxyl groups, carboxyl groups, or hydrophobic hydrocarbon chains in the molecules and oxygen atoms, metal ions or hydrophobic points on the surface of talc. Therefore, they were adsorbed on the talc surface, to reduce the hydrophobicity of talc surface, and realize the depressant for talc.

  • 加载中
  • [1] 龙涛, 冯其明, 卢毅屏, 等. 羧甲基纤维素对层状镁硅酸盐矿物浮选的抑制与分散作用[J]. 中国有色金属学报, 2011, 21(5): 1145−1150.

    Google Scholar

    LONG T, FENG Q M, LU Y P, et al. Depression and dispersion effect of carboxy methyl cellulose on flotation of layered magnesium−silicates[J]. Chinese Journal of Nonferrous Metals, 2011, 21(5): 1145−1150.

    Google Scholar

    [2] LOTTER N O, BRADSHAW D J, BECKER M, et al. A discussion of the occurrence and undesirable flotation behaviour of orthopyroxene and talc in the processing of mafic deposits[J]. Minerals Engineering, 2008, 21(12): 905−912.

    Google Scholar

    [3] BEATTIE D A, HUYNH L, KAGGWA G B N, et al. The effect of polysaccharides and polyacrylamides on the depression of talc and the flotation of sulphide minerals[J]. Minerals Engineering, 2006, 19(6): 598−608.

    Google Scholar

    [4] YUAN D, XIE L, SHI X, et al. Selective flotation separation of molybdenite and talc by humic substances[J]. Minerals Engineering, 2018, 117(3): 34−41.

    Google Scholar

    [5] BEATTIE D A, HUYNH L, KAGGWA G B, et al. Influence of adsorbed polysaccharides and polyacrylamides on talc flotation[J]. International Journal of Mineral Processing, 2006, 78(4): 238−249. doi: 10.1016/j.minpro.2005.11.001

    CrossRef Google Scholar

    [6] 严海军, 罗仙平, 朱贤文, 等. 硫化矿浮选中滑石抑制剂的研究进展[J]. 矿产保护与利用, 2020, 40(1): 138−144.

    Google Scholar

    YAN H J, LUO X P, ZHU X W, et al. Research progress on talc inhibitors in sulfide ore flotation[J]. Conservation and Utilization of Mineral Resources, 2020, 40(1): 138−144.

    Google Scholar

    [7] XUE J W, TU H Z, SHI J, et al. Enhanced inhibition of talc flotation using acidified sodium silicate and sodium carboxymethyl cellulose as the combined inhibitor[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(7): 1310−1319. doi: 10.1007/s12613-022-2582-5

    CrossRef Google Scholar

    [8] 李强, 尚超, 师长伟, 等. 抑制剂对滑石和透闪石可浮性影响试验研究[J]. 非金属矿, 2017, 40(5): 76−78. doi: 10.3969/j.issn.1000-8098.2017.05.023

    CrossRef Google Scholar

    LI Q, SHANG C, SHI C W, et al. Influences of depressants on the floatability of talc and tremolite[J]. Non−metal Ores, 2017, 40(5): 76−78. doi: 10.3969/j.issn.1000-8098.2017.05.023

    CrossRef Google Scholar

    [9] 非金属矿加工专利文摘(国内)[J]. 化工矿物与加工, 2001, 30(7): 37.

    Google Scholar

    Patent abstracts for non−metallic ore processing (domestic) [J]. Chemical Minerals and Processing , 2001, 30(7): 37.

    Google Scholar

    [10] CHIMONYO W, FLETCHER B, PENG Y. The differential depression of an oxidized starch on the flotation of chalcopyrite and graphite[J]. Minerals Engineering, 2020, 146: 106−114.

    Google Scholar

    [11] 地质矿产部矿床地质研究所. 矿石学[M]. 2008.

    Google Scholar

    Institute of Mineral Deposits, Ministry of Geology and Mineral Resources. Ore petrology [M]. 2008.

    Google Scholar

    [12] 彭小平. 滑石之分析与应用[J]. 陶瓷研究, 1995(2): 89−94.

    Google Scholar

    PENG X P. Analysis and application of talc[J]. Ceramic Research, 1995(2): 89−94.

    Google Scholar

    [13] 潘高产. 硫化矿浮选体系中滑石的可浮性研究[J]. 湖南有色金属, 2012, 28(1): 9−12.

    Google Scholar

    PAN G C. Study on talc floatability in the system of sulfide minerals flotation[J]. Hu’nan Nonferrous Metals, 2012, 28(1): 9−12.

    Google Scholar

    [14] ZBIK M, SMART R S C. Dispersion of kaolinite and talc in aqueous solution: nano−morphology and nano−bubble entrapment[J]. Minerals Engineering, 2002, 15(4): 277−286. doi: 10.1016/S0892-6875(02)00034-1

    CrossRef Google Scholar

    [15] BEATTIE D A, ADDAI−MENSAH J, BEAUSSART A, et al. In situ particle film ATR FTIR spectroscopy of poly (N−isopropyl acrylamide) (PNIPAM) adsorption onto talc[J]. Phys Chem Chem Phys, 2014, 16(45): 25143−2551. doi: 10.1039/C4CP03161J

    CrossRef Google Scholar

    [16] 卢烁十. 滑石的晶体化学研究及其在有色金属硫化矿选矿中的浮选现状和实践[J]. 矿冶, 2010, 19(3): 8−11.

    Google Scholar

    LU S S. Research on crystal chemistry of talc and review and application of talc flotation in mineral processing of nonferrous sulphide ores[J]. Mining and Metallurgy, 2010, 19(3): 8−11.

    Google Scholar

    [17] MA X, PAWLIK M. The effect of lignosulfonates on the floatability of talc[J]. International Journal of Mineral Processing, 2007, 83(1): 19−27.

    Google Scholar

    [18] 刘谷山, 冯其明, 欧乐明, 等. 铜离子和镍离子对滑石浮选的影响及作用机理[J]. 硅酸盐学报, 2005, 33(8): 1018−1022.

    Google Scholar

    LIU G S, FENG Q M, OU L M, et al. Influence and mechanism of copper ions and nickel lons on flotation of talc[J]. Journal of Ceramics, 2005, 33(8): 1018−1022.

    Google Scholar

    [19] 孔令宇, 吕晋芳, 魏民, 等. 镍黄铁矿与蛇纹石浮选分离中有机抑制剂的机理研究进展[J]. 矿产保护与利用, 2022, 42(2): 33−41.

    Google Scholar

    KONG L Y, LV J F, WEI M, et al. Research progress of mechanism on organic depressants for the flotation separation of pentlandite and serpentine[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 33−41.

    Google Scholar

    [20] 罗春华, 张秀品, 苏晓晖. 抑制剂CMC在青海某硫化铜镍矿浮选中的应用研究[J]. 有色金属工程, 2017, 7(1): 55−59. doi: 10.3969/j.issn.2095-1744.2017.01.012

    CrossRef Google Scholar

    LUO C H, ZHANG X P, SU X H. Application of CMC depressant during the flotation of copper−nickel sulphide ore in Qinhai[J]. Nonferrous Metals Engineering, 2017, 7(1): 55−59. doi: 10.3969/j.issn.2095-1744.2017.01.012

    CrossRef Google Scholar

    [21] JEON Y J, SHAHIDI F, KIM S K. Preparation of chitin and chitosan oligomers and their applications in physiological functional foods[J]. Food Reviews International, 2000, 16(2): 159−176. doi: 10.1081/FRI-100100286

    CrossRef Google Scholar

    [22] 杨俊杰, 胡广敏, 相恒学, 等. 壳聚糖的溶解行为及其纤维研究进展[J]. 中国材料进展, 2014, 33(11): 641−648. doi: 10.7502/j.issn.1674-3962.2014.11.01

    CrossRef Google Scholar

    YANG J J, HU G M, XIANG H X, et al. Progress in the research of chitosan dissolution behavior and its fibers[J]. Progress in Materials in China, 2014, 33(11): 641−648. doi: 10.7502/j.issn.1674-3962.2014.11.01

    CrossRef Google Scholar

    [23] FENG B, PENG J, GUO W, et al. The effect of changes in pH on the depression of talc by chitosan and the associated mechanisms[J]. Powder Technology, 2018, 325: 58−63. doi: 10.1016/j.powtec.2017.11.005

    CrossRef Google Scholar

    [24] 钟春晖, 冯博, 严华山, 等. 三种有机抑制剂在辉钼矿与滑石浮选分离中的作用[J]. 中国有色金属学报, 2022, 32(12): 3843−3852. doi: 10.11817/j.ysxb.1004.0609.2021-42322

    CrossRef Google Scholar

    ZHONG C H, FENG B, YAN H S, et al. Effects of three organic depressants on flotation separation of molybdenite and talc[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(12): 3843−3852. doi: 10.11817/j.ysxb.1004.0609.2021-42322

    CrossRef Google Scholar

    [25] 王美娜, 李苑新, 蔡兴. 羧甲基壳聚糖的性能及应用概况[J]. 中国实验方剂学杂志, 2015, 21(1): 228−232.

    Google Scholar

    WANG M N, LI Y X, CAI X, et al. Performances and applications overview of carboxythmethyl chitosan[J]. Chinese Journal of Experimental Formulary, 2015, 21(1): 228−232.

    Google Scholar

    [26] 易喻, 江威, 王鸿, 等. 羧甲基壳聚糖的制备及性能研究[J]. 浙江工业大学学报, 2011, 39(1): 16−20.

    Google Scholar

    YI Y, JIANG W, WANG H, et al. Study on preparation and the performance of the carboxymethyl chitosan[J]. Journal of Zhejiang University of Technology, 2011, 39(1): 16−20.

    Google Scholar

    [27] HERAS A, RODRÍGUEZ N M, RAMOS V M, et al. N−methylene phosphonic chitosan: a novel soluble derivative[J]. Carbohydrate Polymers, 2001, 44(1): 1−8. doi: 10.1016/S0144-8617(00)00195-8

    CrossRef Google Scholar

    [28] YE W L, ZHANG X G, PAN C L, et al. Selective flotation separation of chalcopyrite from talc by a novel depressant: N−methylene phosphonic chitosan[J]. Minerals Engineering, 2022, 117(1): 107−367.

    Google Scholar

    [29] 田付强, 李亚超, 曹亦俊, 等. 淀粉及其衍生物抑制剂在矿物浮选中的应用和作用机理研究进展[J]. 矿产保护与利用, 2022, 42(1): 82−88.

    Google Scholar

    TIAN F Q, LI Y C, CAO Y J, et al. Research progress in application and mechanism of starch and its derivative depressants in mineral flotation[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 82−88.

    Google Scholar

    [30] GE W, LI H, REN Y, et al. Flocculation of pyrite fines in aqueous suspensions with corn starch to eliminate mechanical entrainment in flotation [J/OL]. Minerals, 2015, 5(4): 654−664

    Google Scholar

    [31] SHRIMALI K, ATLURI V, WANG X, et al. Adsorption of corn starch molecules at hydrophobic mineral surfaces[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 546(1): 194−202.

    Google Scholar

    [32] 陈代雄, 薛伟, 杨建文, 等. 一种硫化铜矿物与滑石浮选分离方法: CN103008113A[P/OL]. 2013−01−07.

    Google Scholar

    CHEN D X, XUE W, YANG J W, et al. The invention relates to a flotation separation method of copper sulfide mineral and talc: CN103008113A [P/OL]. 2013−01−07.

    Google Scholar

    [33] 刘艳, 冯印, 王丽. 普鲁兰多糖应用进展[J]. 北京农业, 2014, 1(30): 19−19.

    Google Scholar

    LIU Y, FENG Y, WANG L. Progress in the application of pullulan polysaccharide[J]. Beijing Agriculture, 2014, 1(30): 19−19.

    Google Scholar

    [34] ZHANG W, TAO L, XUN L, et al. Improved flotation of molybdenite from talc using a selective reagent scheme[J]. Minerals Engineering, 2022, 176: 107−324.

    Google Scholar

    [35] 刘一山. 瓜尔胶及其衍生物的在造纸行业的应用[J]. 西南造纸, 2006, 35(2): 48−51.

    Google Scholar

    LIU Y S. Application of guar gum and its derivatives in paper industry[J]. Southwest Paper Making, 2006, 35(2): 48−51.

    Google Scholar

    [36] WANG J, SOMASUNDARAN P, NAGARAJ D R. Adsorption mechanism of guar gum at solid–liquid interfaces[J]. Minerals Engineering, 2005, 18(1): 77−81. doi: 10.1016/j.mineng.2004.05.013

    CrossRef Google Scholar

    [37] 潘高产, 卢毅屏, 冯其明, 等. 羧甲基纤维素钠对滑石可浮性及分散性的影响[J]. 金属矿山, 2010, 1(6): 96−100.

    Google Scholar

    PAN G C, LU Y P, FENG Q M, et al. Effect of sodium carboxymethyi cellulose on flotability and dispersion of talc[J]. Metal Mine, 2010, 1(6): 96−100.

    Google Scholar

    [38] J·王, 罗科华, 王荣生, 等. 古尔胶在固−液界面上的吸附机理[J]. 国外金属矿选矿, 2006, 43(4): 30−33.

    Google Scholar

    WANG J, LUO K H, WANG R S, et al. Adsorption mechanism of Gul gum at solid−liquid interface[J]. Mineral Processing of Metal Ore Abroad, 2006, 43(4): 30−33.

    Google Scholar

    [39] 宋永芳. 刺槐资源的开发利用[J]. 林业科技开发, 2002, 16(5): 11−13.

    Google Scholar

    SONG Y F. Exploitation and utilization of robinia pseudoacacia resources[J]. Forestry Science and Technology Development, 2002, 16(5): 11−13.

    Google Scholar

    [40] FENG B, PENG J, ZHANG W, et al. Use of locust bean gum in flotation separation of chalcopyrite and talc[J]. Minerals Engineering, 2018, 122: 79−83. doi: 10.1016/j.mineng.2018.03.044

    CrossRef Google Scholar

    [41] 朱贤文. 高分子抑制剂在黄铜矿和滑石浮选分离中的应用与机理研究[D]. 赣州: 江西理工大学, 2017.

    Google Scholar

    ZHU X W. Study on the application and mechanism of high polymer inhibitor in flotation separation of chalcopyrite and talcum[D]. Ganzhou: Jiangxi university of science and technology, 2017.

    Google Scholar

    [42] PALANIRAJ A, JAYARAMAN V. Production recovery and applications of xanthan gum by xanthomonas campestris[J]. Journal of Food Engineering, 2011, 106(1): 1−12. doi: 10.1016/j.jfoodeng.2011.03.035

    CrossRef Google Scholar

    [43] 周盛华, 黄龙, 张洪斌. 黄原胶结构、性能及其应用的研究[J]. 食品科技, 2008, 33(7): 156−160. doi: 10.3969/j.issn.1005-9989.2008.07.045

    CrossRef Google Scholar

    ZHOU S H, HUANG L, ZHANG H B. Research development 013 the structure, property and application of xanthan gum[J]. Food Technology, 2008, 33(7): 156−160. doi: 10.3969/j.issn.1005-9989.2008.07.045

    CrossRef Google Scholar

    [44] PAN G, SHI Q, ZHANG G, et al. Selective depression of talc in chalcopyrite flotation by xanthan gum: flotation response and adsorption mechanism[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 600: 124−902.

    Google Scholar

    [45] 陈渊淦, 杨思琦, 汪惠惠, 等. 胶类抑制剂对滑石的抑制行为及机理[J]. 非金属矿, 2020, 43(4): 1−3. doi: 10.3969/j.issn.1000-8098.2020.04.001

    CrossRef Google Scholar

    CHEN Y G, YANG S Q, WANG H H, et al. The depression behavior and mechanisms of gum depressants to talc[J]. Non−Metal Ores, 2020, 43(4): 1−3. doi: 10.3969/j.issn.1000-8098.2020.04.001

    CrossRef Google Scholar

    [46] ZHONG C, WANG H, ZHANG L, et al. Flotation separation of molybdenite and talc by xanthan gum[J]. Powder Technology, 2021, 388: 158−165. doi: 10.1016/j.powtec.2021.04.080

    CrossRef Google Scholar

    [47] 李国栋, 陈梁, 高利坤, 等. 某含滑石硫化铜矿浮选试验研究[J]. 矿产保护与利用, 2015(1): 37−40. doi: 10.13779/j.cnki.issn1001-0076.2015.01.008

    CrossRef Google Scholar

    LI G D, CHEN L, GAO L K, et al. Research on the flotation of copper sulphide containing talcum[J]. Conservation and Utilization of Mineral Resources, 2015(1): 37−40. doi: 10.13779/j.cnki.issn1001-0076.2015.01.008

    CrossRef Google Scholar

    [48] 祁忠旭, 孙大勇, 冯程, 等. 一种抑制易浮脉石矿物的组合抑制剂及其使用方法: CN108499743B[P/OL]. 2017−04−21.

    Google Scholar

    QI Z X, SUN D Y, FENG C, et al. The invention relates to a combination inhibitor for inhibiting easily floating gangue minerals and an application method thereof: CN108499743B[P/OL]. 2017−04−21.

    Google Scholar

    [49] 陈志强. 优化组合抑制剂对哈密铜镍矿浮选分离的影响研究[D]. 成都: 西南科技大学, 2021.

    Google Scholar

    CHEN Z Q. The effect of optimized combination of depressants on the flotation separation of copper−nickel ore in Hami[D]. Chengdu: Southwest University of Science and Technology, 2021.

    Google Scholar

    [50] 蔡教忠, 邓建英, 邓久帅, 等. 一种提高滑石型硫化铜矿浮选指标的抑制剂、制备方法及应用:CN115999777A[P/OL]. 2023−01−31.

    Google Scholar

    CAI J Z, WANG J Y, DEN J S, et al. The invention relates to an inhibitor for improving the flotation index of talc type copper sulfide, a preparation method and application: CN115999777A[P/OL]. 2023−01−31.

    Google Scholar

    [51] 麦琼尹, 欧乐明, 王晨亮, 等. 降低云南某硫化铜矿氧化镁含量试验研究[J]. 矿冶工程2021, 41(3): 57−63.

    Google Scholar

    MAI Q Y, OU L M, WANG X C, et al. Experimental study on reducing MgO content in copper sulfide ore from Yunnan[J]. Mining and Metallurgical Engineering, 2021, 41(3): 57−63.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(332) PDF downloads(0) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint