Citation: | ZHANG Guofan, SHEN Xiaoyi, SHAO Hongmei, ZHANG Shanshan, HAN Qing, ZHAI Yuchun. Research Progress Beneficiation and Metallurgy Technology of Zinc Oxide Ore[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 158-170. doi: 10.13779/j.cnki.issn1001-0076.2023.06.017 |
With the increasing demand for zinc and the gradual scarcity of the zinc sulfide ore resources, the development and utilization of the zinc oxide ore has become a research hotspot. The main characteristics of the zinc oxide ore resources and the beneficiation, pyrometallurgy and hydrometallurgy processes for the exploitation and utilization of the zinc oxide ore are reviewed. The difficulties and development direction of the mineral processing of the medium and low grade zinc oxide ore, including the development of flotation reagents and the advantages and disadvantages of the pyrometallurgy are expounded. Furthermore, the characteristics, advantages and disadvantages of the hydrometallurgy, including the acid process and alkaline process, for the utilization of the zinc oxide ore are emphatically reviewed, which can provide technical reference for the development and utilization of zinc oxide ore. Aiming to the development of the comprehensive utilization of zinc oxide ore, the advantages of the ammonium sulfate method in the clean and comprehensive utilization of zinc oxide ore for the realization of the extraction and utilization of the valuable components such as zinc, silicon, iron, aluminum, lead, strontium and the recycling of reaction medium were reviewed. Finally, the direction of the development and utilization of the zinc oxide ore is prospected.
[1] | 翟玉春. 绿色冶金—资源绿色化、高附加值综合利用[M]. 长沙: 中南大学出版社, 2015. ZHAI Y C. Clean metallurgy−clean and high value−added comprehensive utilization of resources [M]. Changsha: Central South Press, 2015. |
[2] | 申亚芳, 张馨圆, 王乐, 等. 氧化锌矿处理方法现状[J]. 矿产综合利用, 2020(2): 23−28+36. SHEN Y F, ZHANG X Y, WANG L, et al. Preparation of zinc and its compounds from zinc oxide ore[J]. Multipurpose Utilization of Mineral Resources, 2020(2): 23−28+36. |
[3] | MORADI S, MONHEMIUS A J. Mixed sulphide oxide lead and zinc ores: Problems and solutions[J]. Minerals Engineering, 2011, 24(10): 1062−1076. doi: 10.1016/j.mineng.2011.05.014 |
[4] | 冯程, 祁忠旭, 孙大勇, 等. 氧化锌矿选矿技术现状与进展[J]. 矿业研究与开发, 2019, 39(9): 105−109. FENG C, QI Z X, SUN D Y. et al. Current status and overview of zinc oxide ore beneficiation technology[J]. Mining Research and Development, 2019, 39(9): 105−109. |
[5] | 李勇, 王吉坤, 任占誉, 等. 氧化锌矿处理的研究现状[J]. 矿冶, 2009, 18(2): 57−63. LI Y, WANG J K, REN Z Y, et al. Development of treatment on zinc oxide ore[J]. Mining and Metallurgy, 2009, 18(2): 57−63. |
[6] | 张国范, 张凤云. 浮选过程中金属离子对异极矿硫化的影响[J]. 中南大学学报(自然科学版), 2017, 48(7): 1689−1696. ZHANG G F, ZHANG F Y. Effect of metal ions on sulfiding flotation of hemimorphite[J]. Journal of Central South University (Science and Technology), 2017, 48(7): 1689−1696. |
[7] | 吴丹丹. 铵盐对菱锌矿强化硫化浮选理论研究[D]. 昆明: 昆明理工大学, 2015. WU D D. Theoretical Study of ammonium salt for enhanced sulfide flotation of zinc rhodochrosite [D]. Kunming: Kunming University of Technology, 2015. |
[8] | 王利飞, 邓志敢, 魏昶. 低品位氧化锌矿硫化转化—浮选工艺回收铅锌[J]. 矿冶, 2019, 28(3): 71−74. WANG L F, DENG Z G, WEI C. Recovery of lead and zinc from low−grade zinc oxide ore by Sulfide Conversion−Flotation process[J]. Mining and Metallurgy, 2019, 28(3): 71−74. |
[9] | 王聪兵. 难选氧化锌矿硫化焙烧−浮选理论与技术研究[D]. 昆明: 昆明理工大学, 2020. WANG C B. Research on the theory and technology of vulcanization roasting−flotation of difficult−to−select zinc oxide ore[D]. Kunming: Kunming University of Science and Technology, 2020. |
[10] | NAYAK A, JENA M S, MANDRE N R. Beneficiation of lead−zinc ores−A review[J]. Mineral Processing and Extractive Metallurgy Review, 2022, 43(5): 564−583. doi: 10.1080/08827508.2021.1903459 |
[11] | 宋龑, 刘全军, 常富强. 氧化锌矿的浮选现状与研究进展[J]. 矿冶, 2012, 21(2): 19−22. SONG Y, LIU Q J, CHANG F Q. Status and research progress of zinc oxide ore flotation [J]. Mining and Metallurgy, 2012, 21(2): 19−22. |
[12] | ZHAO W J, WANG M L, YANG B, et al. Enhanced sulfidization flotation mechanism of smithsonite in the synergistic activation system of copper−ammonium species[J]. Minerals Engineering, 2022, 187: 107796. doi: 10.1016/j.mineng.2022.107796 |
[13] | FENG Q C, WANG M L, ZHANG G, et al. Enhanced adsorption of sulfide and xanthate on smithsonite surfaces by lead activation and implications for flotation intensification[J]. Separation and Purification Technology, 2023, 307(15): 122772. |
[14] | 张威, 毕洪山, 张津, 等. EDTA二钠钙对十二胺体系中菱锌矿浮游性的影响[J]. 矿产保护与利用, 2018(3): 124−129. ZHANG W, BI H S, ZHANG J, et al. Effect of EDTA Na2−Ca on the pelagic activity of smithsonite in dodecylamine system[J]. Conservation and Utilization of Mineral Resources, 2018(3): 124−129. |
[15] | 李明晓, 谭伟, 王宏锋, 等. 无机钠盐活化异极矿的作用机理研究[J]. 有色金属(选矿部分), 2017(3): 94−98. LI M X, TAN W, WANG H F, et al. Action mechanism of inorganic sodium salts activating hemimorphite[J]. Nonferrous Metals (Mineral Processing Section), 2017(3): 94−98. |
[16] | KHALEGHI B, NOAPARAST M, SHAFAEI S Z, et al. Flotation study of oxide zinc ore using cationic−anionic mixed collectors[J]. Russian Journal of Non−Ferrous Metals, 2016, 57(7): 647−658. doi: 10.3103/S1067821216070117 |
[17] | PEREIRA C A, PERES A E C. Reagents in calamine zinc ores flotation[J]. Minerals Engineering, 2005, 18(2): 275−277. doi: 10.1016/j.mineng.2004.09.011 |
[18] | 蔡锦鹏. 菱锌矿加温强化硫化机理研究[D]. 昆明: 昆明理工大学, 2019. CAI J P. Study on the mechanism of heating enhanced vulcanization of zinc sphaerite[D]. Kunming: Kunming University of Science and Technology, 2019. |
[19] | CHEN Y F, ZHANG G F, WANG M T, et al. Utilization of sodium carbonate to eliminate the adverse effect of Ca2+ on smithsonite sulphidisation flotation[J]. Minerals Engineering, 2019, 132: 121−125. doi: 10.1016/j.mineng.2018.12.003 |
[20] | ZHAO L, LIU W G, LIU W B, et al. Investigation on matching relationship between surface characters and collector properties: Achieving flotation separation of zinc oxide minerals from quartz[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617. |
[21] | Ejtemaei M, Irannajad M, Gharabaghi M. Role of dissolved mineral species in selective flotation of smithsonite from quartz using oleate as collector[J]. International Journal of Mineral Processing, 2012, 114/115/116/117(8): 40−47. |
[22] | 郭姚. 新型分散剂强化含泥菱锌矿浮选行为的研究[D]. 赣州: 江西理工大学, 2022. GUO Y. Study on enhancing flotation behavior of argillaceous smithsonite with novel dispersant[D]. Ganzhou: Jiangxi University of Science and Technology, 2022. |
[23] | 常自勇, 李玉娇, 沈政昌, 等. 微细粒矿物浮选捕收剂的应用及其机理研究进展[J]. 工程科学学报, 2023, 45(11): 1807−1819. CHANG A Y, LI Y J, SHEN Z C, et al. Advancements in the application and mechanism of fine−grained mineral flotation collectors[J]. Chinese Journal of Engineering, 2023, 45(11): 1807−1819. |
[24] | 石道民, 杨敖. 氧化铅锌矿的浮选[M]. 昆明: 云南科技出版社, 1996. SHI D M, YANG A. Flotation of lead−zinc oxide ore[M]. Kunming: Yunnan Science and Technology Press, 1996. |
[25] | 宋凯伟. 氧硫混合锌矿氨铵溶蚀−活化浮选机理与工艺[D]. 昆明: 昆明理工大学, 2021. SONG K W. Mechanism and process of ammonia−ammonium solution−activation flotation for oxy−sulfur mixed zinc ore[D]. Kunming: Kunming University of Technology, 2021. |
[26] | 付广钦, 周晓彤. 新型脂肪酸协同螯合类捕收剂对黑钨矿与脉石矿物浮选行为的影响[J]. 矿产保护与利用, 2021, 41(2): 28−33. FU G Q, ZHOU X T. Flotation behavior research on collector combination of novel fatty acid and chelating collector on wolframite and gangue minerals[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 28−33. |
[27] | 王洪岭. 氧化锌矿浮选工艺及捕收剂研究现状[J]. 铜业工程, 2011(4): 12−16. doi: 10.3969/j.issn.1009-3842.2011.04.002 WANG H L. Current situation of study on floatation technology and collecting agent of oxidized zinc ore[J]. Copper Engineering, 2011(4): 12−16. doi: 10.3969/j.issn.1009-3842.2011.04.002 |
[28] | 刘炅. 难选氧化锌矿石全粒级浮选新药剂研究[D]. 南宁: 广西大学, 2019. LIU J. Study on new agents for of refractory zinc oxide ores by full−size flotation[D]. Nanning: Guangxi University, 2019. |
[29] | ZHAO L, LIU W G, DUAN H, et al. Design and selection of flotation collectors for zinc oxide minerals based on bond valence model[J]. Minerals Engineering, 2021, 160. |
[30] | 刘洋, 胡显智, 魏志聪. 氧化锌矿浮选药剂研究概况[J], 矿产保护与利用, 2011, (1): 51−55. LIU Y, HU X Z, WEI Z C. Overview of research on flotation reagents of zinc oxide ore[J]. Conservation and Utilization of Mineral Resources, 2011, (1): 51−55. |
[31] | XIE Q L, WANG D D, HAN Z C, et al. Influence of polysorbate 80 on the flotation of zinc oxide ores with amines[J]. Physicochemical Problems of Mineral Processing, 2022, 58(1): 149−158. |
[32] | 曹飞, 曹进成, 吕良, 等. 内蒙古某富银铅锌硫化矿浮选分离试验研究[J]. 矿冶工程, 2023, 43(3): 67−71. CAO F, CAO J C, LV L, et al. Experimental study on flotation of Ag−rich Pb−Zn sulfide ore from lnner Mongolia[J]. Mining and Metallurgical Engineering, 2023, 43(3): 67−71. |
[33] | 宋凯伟. 氧硫混合锌矿氨铵溶蚀−活化浮选机理与工艺[D]. 昆明: 昆明理工大学, 2022. SONG K W. Mechanism and process of ammonia−ammonium solution−activation flotation in oxy−sulfur mixed zinc ore[D]. Kunming: Kunming University of Science and Technology, 2022. |
[34] | 赵文娟. 基于铜−铵协同活化的菱锌矿强化硫化浮选理论研究[D]. 昆明: 昆明理工大学, 2022. ZHAO W J. Study on the theory of enhanced sulfide flotation based on Cu−ammonium co−activation of Hematite zinc ore[D]. Kunming: Kunming University of Science and Technology, 2022. |
[35] | 罗云波, 石云良, 刘苗华, 等. 氧化锌矿浮选研究现状与进展[J]. 铜业工程, 2013(4): 21−25. LUO Y B, SHI Y L, LIU M H, et al. Research status and progress of zinc oxide ore flotation[J]. Copper Engineering, 2013(4): 21−25. |
[36] | 罗利萍, 徐龙华, 巫侯琴, 等. 氧化锌矿物的表面性质与浮选关系研究综述[J]. 金属矿山, 2020(6): 24−30. LUO L P, XU L H, WU H Q, et al. A review on the relationship between surface properties and flotation of zina oxide ore[J]. Metal Mine, 2020(6): 24−30. |
[37] | CHEN L Z, WANG C B, ZHENG Y X. Flotation of a low−grade zinc oxide ore after surface modification at high temperature[J]. The Journal of The Minerals, Metals & Materials Society, 2019, 71(9): 3166−3172. |
[38] | 聂琪, 武俊杰. 新型捕收剂在青海某混合铅锌矿分选中的应用[J]. 矿产保护与利用, 2019, 39(1): 69−72+77. NIE Q, WU J J. Experimental research on mineral processing of lead−zinc ore in Qinghai[J]. Conservation and Utilization of Mineral Resources, 2019, 39(1): 69−72+77. |
[39] | 文金磊. 氧化锌矿浮选技术研究现状[J]. 湖南有色金属, 2022, 38(4): 18−20. WEN J L. Research stetus of zinc oxide ore flotation technology[J]. Hu’nan Nonferrous Metals, 2022, 38(4): 18−20. |
[40] | 杨国栋. 韦氏炉生产锌氧粉的工艺实践[J]. 有色金属(冶炼部分), 1992(3): 15−18. YANG G D. Technological practice of producing zinc oxide powder in Wechsler Furnace[J]. Nonferrous Metals (Smelting Section), 1992(3): 15−18. |
[41] | 李时晨, 朱玉芹. 回转窑高温还原挥发处理难选低品位氧化锌矿[J]. 云南冶金, 1992(4): 13−15+21. LI S C, ZHU Y Q. Treatment of refractory low grade zinc oxide ore by rotary kiln high temperature reduction volatilization[J]. Yunnan Metallurgy, 1992(4): 13−15+21. |
[42] | 陈志红. 低品位氧化锌矿资源化利用的工业生产研究[D]. 西安: 西安建筑科技大学, 2017. CHEN Z H. Industrial production research of low grade oxidized zinc mine resource utilization [D]. Xi’an: Xi’an University of Architecture and Technology, 2017. |
[43] | 郭兴忠, 张丙怀, 阳海彬, 等. 氧化锌矿火法处理新工艺−铁浴熔融还原法[J]. 有色冶炼, 2002, 31(2): 18−22. GUO X Z, ZHANG B H, YANG H B, et al. A new pyrometallurgical process for treating zinc oxide ore−iron bath smelting reduction process[J]. Non−Ferrous Smelting, 2002, 31(2): 18−22. |
[44] | 郭兴忠, 张丙怀, 阳海彬, 等. 熔融还原处理低品位氧化锌矿的研究[J]. 矿冶工程, 2003, 23(1): 57−60. doi: 10.3969/j.issn.0253-6099.2003.01.018 GUO X Z, ZHANG B H, YANG H B, et al. Melting−reduction of low−grade zinc oxide ores[J]. Mining and Metallurgical Engineering, 2003, 23(1): 57−60. doi: 10.3969/j.issn.0253-6099.2003.01.018 |
[45] | XIONG L Z, XIANG Y H, WU X W, et al. Preparation of high purity zinc from zinc oxide ore by vacuum carbothermic reduction[J]. Vacuum, 2017, 146: 200−205. doi: 10.1016/j.vacuum.2017.09.050 |
[46] | YANG J L, HUO X N, LI Z Y, et al. Study on hydrometallurgical treatment of oxide ores bearing zinc[J]. Minerals, 2022, 12(10): 1264. doi: 10.3390/min12101264 |
[47] | 沈卫卫, 沈贤德, 林海彬, 等. 酸浸法从低品位氧化锌矿及含锌废石制备碱式碳酸锌[J]. 中国矿业, 2022, 31(S1): 444−450. doi: 10.12075/j.issn.1004-4051.2022.S1.025 SHEN W W, SHEN X D, LIN H B, et al. Preparation of basic zinc carbonate from low−grade zinc oxide ore and zinc−bearing waste rock by acid leaching[J]. China Mining Magazine, 2022, 31(S1): 444−450. doi: 10.12075/j.issn.1004-4051.2022.S1.025 |
[48] | 覃文庆, 唐双华, 厉超. 高硅低品位氧化锌矿的酸浸动力学[J]. 矿冶工程, 2008, 28(1): 62−66. QIN W Q, TANG S H, LI C. Kinetics of sulfuric acid leaching of high silica low−grade zinc oxide ore[J]. Mining and Metallurgy Engineering, 2008, 28(1): 62−66. |
[49] | 蓝卓越, 胡岳华, 黎维中. 低品位氧化锌矿硫酸浸出工艺研究[J]. 矿冶工程, 2002, 22(3): 63−65. LAN Z Y, HU Y H, LI W Z. Sulfuric acid leaching of low−grade zinc oxide ore−a study[J]. Mining and Metallurgy Engineering, 2002, 22(3): 63−65. |
[50] | ZHANG Y D, HUA Y X, GAO X B. Recovery of zinc from a low−grade zinc oxide ore with high silicon by sulfuric acid curing and water leaching[J]. Hydrometallurgy, 2016, 166: 16−21. doi: 10.1016/j.hydromet.2016.08.010 |
[51] | 徐红胜. 高硅锌矿高温酸转化沉硅基础理论及工艺研究[D]. 昆明: 昆明理工大学, 2014. XU H S. Research on basic theory and technology of high silicon zinc ore conversion from high temperature acid to sinking silicon[D]. Kunming: Kunming University of Science and Technology, 2014. |
[52] | IRANNAJAD M, MESHKINI M, AZADMEHR A R. Leaching of zinc from low grade oxide ore using organic acid[J]. Physicochemical Problems of Mineral Processing, 2013, 49(2): 547−555. |
[53] | HUSSAINI S, KURSUNOGLU S, TOP S, et al. Testing of 17−different leaching agents for the recovery of zinc from a carbonate−type Pb−Zn ore flotation tailing[J]. Minerals Engineering, 2021, 168: 106935. doi: 10.1016/j.mineng.2021.106935 |
[54] | 杨秀丽, 魏昶. 某难处理高硅氧化锌矿加压酸浸工艺[J]. 矿冶工程, 2009, 29(5): 65−69. YANG X L, WEI C. Study on pressure acid leaching technique of refractory high silicon zinc oxide ore[J]. Mining and Metallurgy Engineering, 2009, 29(5): 65−69. |
[55] | HE S M, WANG J K, YAN J F. Pressure leaching of high silica Pb–Zn oxide ore in sulfuric acid medium[J]. Hydrometallurgy, 2010, 104(2): 235−240. doi: 10.1016/j.hydromet.2010.06.011 |
[56] | XU H S, WEI C, LI C X, et al. Sulfuric acid leaching of zinc silicate ore under pressure[J]. Hydrometallurgy, 2010, 105(1/2): 186−190. |
[57] | XU H S, WEI C, LI C X, et al. Leaching of a complex sulfidic, silicate−containing zinc ore in sulfuric acid solution under oxygen pressure[J]. Hydrometallurgy, 2012, 85: 206−212. |
[58] | 王乐, 牟文宁, 刘少名, 等. 低品位氧化锌矿的浓硫酸焙烧[J]. 东北大学学报, 2014, 35(8): 1169−1172. WANG L, MU W N, LIU S M, et al. Roasting of low grade zinc oxide ore by concentrated sulfuric acid[J]. Journal of Northeastern University, 2014, 35(8): 1169−1172. |
[59] | 陈伟恒. 外场强化低品位氧化锌矿浸出锌新工艺研究[D]. 昆明: 昆明理工大学, 2017. CHEN W H. Research on new technology of zinc leaching from low grade zinc oxide ore strengthened in field[D]. Kunming: Kunming University of Science and Technology, 2017. |
[60] | 曹志阎. 硅锌矿在(NH4)2SO4−NH3−H2O体系浸出过程的研究[D]. 长沙: 中南大学, 2011. CAO Z Y. Leaching process of willemite in (NH4)2SO4−NH3−H2O system[D]. Changsha: Central South University, 2011. |
[61] | 陈兵. 碱熔融焙烧法处理氧化锌矿提取锌硅及反应过程分析[D]. 沈阳: 东北大学, 2020. CHEN B. Extraction of Zn and Si from zinc oxide ore by alkali roasting method and reaction process analysis[D]. Shenyang: Northeastern University, 2020. |
[62] | FRENAY J. Leaching of oxidized zinc ores in various media[J]. Hydrometallurgy, 1985, 15(2): 243−253. doi: 10.1016/0304-386X(85)90057-X |
[63] | 陈爱良, 赵中伟, 贾希俊. 高硅难选氧化锌矿中锌及伴生金属碱浸出研究[J]. 有色金属(冶炼部分), 2009(4): 6−9. CHEN A L, ZHAO Z W, JIA X J, et al. Leaching zinc and its concomitant metals from difficult dealt zinc oxide ore with high silicon in alkali solution[J]. Nonferrous Metals (Extractive Metallurgy), 2009(4): 6−9. |
[64] | CHEN A L, ZHAO Z W, JIA X. Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore[J]. Hydrometallurgy, 2009, 97(3/4): 228−232. |
[65] | FABIANO M F S, PABLO S P, RODRIGO P, et al. The kinetics of zinc silicate leaching in sodium hydroxide[J]. Hydrometallurgy, 2010, 102(1/2/3/4): 43−49. |
[66] | CHEN B, SHEN X Y, GU H M, et al. Extracting reaction mechanism analysis of Zn and Si from zinc oxide ore by NaOH roasting method[J]. Journal of Central South University, 2017, 24(10): 2266−2274. doi: 10.1007/s11771-017-3637-z |
[67] | SHEN X Y, SHAO H M, GU H M, et al. Reaction mechanism analysis of roasting Zn2SiO4 using NaOH[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(9): 1878−1886. doi: 10.1016/S1003-6326(18)64833-2 |
[68] | 赵中伟, 贾希俊, 陈爱良, 等. 氧化锌矿的碱浸出[J]. 中南大学学报, 2010, 41(1): 39−43. ZHAO Z W, JIA X J, CHEN A L, et al. Leaching zinc oxide ore in alkaline solution[J]. Journal of Central South University, 2010, 41(1): 39−43. |
[69] | ZHAO Z W, LONG S, CHEN A L, et al. Mechanochemical leaching of refractory zinc silicate (hemimorphite) in alkaline solution[J]. Hydrometallurgy, 2009, 99(3/4): 255−258. |
[70] | 刘三军, 欧乐明, 冯其明, 等. 低品位氧化锌矿石的碱法浸出[J]. 湿法冶金, 2005, 24(1): 23−25. LIU S J, OU L M, FENG Q M, et al. Alkaline leaching of Zn from zinc oxide ore[J]. Hydrometallurgy of China, 2005, 24(1): 23−25. |
[71] | MOGHADDAM J, SARRAF−MAMOORY R, YAMINI Y, et al. Determination of the optimum conditions for the leaching of nonsulfide zinc ores (high−SiO2) in ammonium carbonate media[J]. Industrial & Engineering Chemistry Research, 2005, 44(24): 8952−8958. |
[72] | 刘继东, 苏佳林, 吕建华, 等. 氧化锌工艺浸取过程氧化锌−氨−碳酸氢铵−水体系热力学分析[J]. 无机盐工业, 2015, 47(6): 30−33. LIU J D, SI J L, LV J H, et al. Thermodynamic analysis on system of ZnO−NH3−NH4HCO3−H2O in process of zinc oxide leaching[J]. Inorganic Chemicals Industry, 2015, 47(6): 30−33. |
[73] | 刘智勇. 氧化锌矿物在氨—铵盐—水体系中的浸出机理[D]. 长沙: 中南大学, 2014. LIU Z Y. Leaching mechanism of zinc oxide ores in ammonia−ammonium aqueous solution[D]. Changsha: Central South University, 2009. |
[74] | 唐谟堂, 张鹏, 何静, 等. Zn(Ⅱ)−(NH4)2SO4−H2O体系浸出锌烟尘[J]. 中南大学学报, 2007, 38(5): 867−872. TANG M T, ZHANG P, HE J, et al. Leaching zinc dust in system of Zn(Ⅱ)−(NH4)2SO4−H2O[J]. Journal of Central South University, 2007, 38(5): 867−872. |
[75] | 慕思国, 彭长宏, 黄虹, 等. 298 K时三元体系MeSO4−(NH4)2SO4−H2O的相平衡[J]. 过程工程学报, 2006, 6(1): 32−36. MU S G, PENG C H, HUANG H, et al. Equilibrium solubility in ternary system of MeSO4−(NH4)2SO4−H2O at 298 K[J]. The Chinese Journal of Process Engineering, 2006, 6(1): 32−36. |
[76] | 胡汉, 朱云. 难选氧化锌矿氨浸的热力学[J]. 云南冶金, 2004, 33(1): 28−31. HU H, ZHU Y. Thermodynamics of ammonia leaching of refractory oxide zinc ore[J]. Yunnan Metallurgy, 2004, 33(1): 28−31. |
[77] | FENG L Y, YANG X W, SHEN Q F, et al. Pelletizing and alkaline leaching of powdery low grade zinc oxide ores[J]. Hydrometallurgy, 2007, 89(3/4): 305−310. |
[78] | LIU Z H, LIU Z Y, LI Q H, et al. Dissolution behavior of willemite in the (NH4)2SO4−NH3−H2O system[J]. Hydrometallurgy, 2012, 125-126(0): 50−54. |
[79] | 刘志宏, 曹志阎, 刘智勇, 等. 硅锌矿在(NH4)2SO4−NH3−H2O体系中高液固比下的浸出动力学[J]. 中南大学学报, 2012, 43(2): 418−423. LIU Z H, CAO Z Y, LIU Z Y, et al. Leaching kinetics of willemite in (NH4)2SO4− NH3−H2O system at higher mass ratio of liquid to solid[J]. Journal of Central South University, 2012, 43(2): 418−423. |
[80] | 刘晓丹, 张元福. 铵盐浸出氧化锌矿动力学的研究[J]. 贵州工业大学学报, 2004, 33(2): 82−84. LIU X D, ZHANG Y F. Study on kinetics of ammonium salt leaching on znicite[J]. Journal of Guizhou University of Technology, 2004, 33(2): 82−84. |
[81] | YANG S H, TANG M T. Thermodynamics of Zn(Ⅱ)−NH3−NH4Cl−H2O system[J]. Transactions of Nonferrous Metals Society of China, 2000, 10(6): 830−833. |
[82] | YANG S H, LI H, SUN Y W, et al. Leaching kinetics of zinc silicate in ammonium chloride solution[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(6): 1688−1695. doi: 10.1016/S1003-6326(16)64278-4 |
[83] | 张元福, 梁杰, 李谦. 铵盐法处理氧化锌矿的研究[J]. 贵州工业大学学报, 2002, 31(1): 37−41. ZHANG Y F, LIANG J, LI Q. A study on treating zincite by ammonium salt process[J]. Journal of Guizhou University of Technology, 2002, 31(1): 37−41. |
[84] | WANG R X, TANG M T, YANG S H, et al. Leaching kinetics of low grade zinc oxide ore in NH3−NH4Cl−H2O system[J]. Journal of Central South University of Technology, 2008, 15(5): 679−683. doi: 10.1007/s11771-008-0126-4 |
[85] | 王瑞祥. MACA体系中处理低品位氧化锌矿制取电锌的理论与工艺研究[D]. 长沙: 中南大学, 2009. WANG R X. Study on the theory and technology for treating low−grade zinc oxide ores to prepare cathode zinc in the Me−NH4Cl−NH3−H2O system[D]. Changsha: Central South University, 2009. |
[86] | 张玉梅, 李洁, 陈启元, 等. 超声波辐射对低品位氧化锌矿氨浸行为的影响[J]. 中国有色金属学报, 2009, 19(5): 960−966. ZHANG Y M, LI J, CHEN Q Y, et al. Influence of ultrasonic irradiation on ammonia leaching of zinc from low−grade oxide zinc ore[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(5): 960−966. |
[87] | YUAN T C, CAO Q Y, LI J. Effects of mechanical activation on physicochemical properties and alkaline leaching of hemimorphite[J]. Hydrometallurgy, 2010, 104(2): 136−141. doi: 10.1016/j.hydromet.2010.05.008 |
[88] | 唐谟堂, 张家靓, 王博, 等. 低品位氧化锌矿在MACA体系中的循环浸出[J]. 中国有色金属学报, 2011, 21(1): 214−219. TANG M T, ZHANG J L, WANG B, et al. Cycle leaching of low grade zinc oxide ores in MACA system[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(1): 214−219. |
[89] | DING Z Y, CHEN Q Y, YIN Z L, et al. Predominance diagrams for Zn(Ⅱ)−NH3−Cl−−H2O system [J], Transactions of Nonferrous Metals Society of China, 2013, 23(3): 832−840. |
[90] | DING Z Y, YIN Z L, HU H P, et al. Dissolution kinetics of zinc silicate (hemimorphite) in ammoniacal solution[J]. Hydrometallurgy, 2010, 104(2): 201−206. doi: 10.1016/j.hydromet.2010.06.004 |
[91] | YIN Z L, DING Z Y, HU H P, et al. Dissolution of zinc silicate (hemimorphite) with ammonia−ammonium chloride solution[J]. Hydrometallurgy, 2010, 104(1/2/3/4): 215−220. |
[92] | CHEN A L, LI M C, QAN Z, et al. Hemimorphite ores: a review of processing technologies for zinc extraction[J]. JOM, 2016, 68(10): 2688−2697. doi: 10.1007/s11837-016-2066-z |
[93] | RAO S, ZHANG D C, YANG T Z, et al. Selective extraction of zinc from refractory hemimorphite using iminodiacetic acid as a complexing agent[J]. JOM, 2017, 69(10): 1909−1913. doi: 10.1007/s11837-017-2328-4 |
[94] | RAO S, YANG T Z, ZHANG D C, et al. Leaching of low grade zinc oxide ores in NH4Cl−NH3 solutions with nitrilotriacetic acid as complexing agents[J]. JOM, 2015, 158: 101−106. |
[95] | YANG T Z, RAO S, ZHANG D C, et al. Leaching of low grade zinc oxide ores in nitrilotriacetic acid solutions[J]. Hydrometallurgy, 2016, 161: 107−111. doi: 10.1016/j.hydromet.2016.01.024 |
[96] | 孙毅. 氧化锌矿高附加值绿色化综合利用的研究[D]. 沈阳: 东北大学, 2014. SUN Y. Study on high value−added and green utilization of zinc oxide ore[D]. Shenyang: Northeastern University, 2014. |
[97] | 邵鸿媚. 氧化锌矿清洁高附加值综合利用及反应过程分析[D]. 沈阳: 东北大学, 2017. SHAO H M. High value−added and green utilization of zinc oxide ore and analysis of reaction process[D]. Shenyang: Northeastern University, 2017. |
[98] | SHEN X Y, SHAO H M, DING J W, et al. Zinc extraction from zinc oxidized ore using (NH4)2SO4 roasting−leaching process[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(11): 1471−1481. doi: 10.1007/s12613-020-2015-2 |
[99] | SHAO H M, SHEN X Y, YI S, et al. Reaction condition optimization and kinetic investigation of roasting zinc oxide ore using (NH4)2SO4[J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(10): 1−8. |
[100] | 邵鸿媚, 申晓毅, 朱慧婷, 等. 低品位氧化锌矿硫酸铵焙烧过程及其反应机理[J]. 中国有色金属学报, 2017, 27(1): 138−144. SHAO H M, SHEN X Y, ZHU H T, et al. Process and reaction mechanism of roasting low grade zinc oxide ore with (NH4)2SO4[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(1): 138−144. |
[101] | SHEN X Y, LIANG Y Y, SHAO H M, et al. Extraction and kinetic analysis of Pb and Sr from the leaching residue of zinc oxide ore[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(2): 201−209. doi: 10.1007/s12613-020-1972-9 |
[102] | SHEN X Y, LIANG Y, ZHAI Y C, et al. Shape−controllable synthesis of ultrafine ZnO powders of different morphologies[J]. Journal of Materials Science & Technology, 2013, 29(1): 44−48. |
[103] | SHAO H M, SHEN X Y, LI X T, et al. Growth mechanism and photocatalytic evaluation of flower−like ZnO microstructures prepared with SDBS assistance[J]. International Journal of Minerals Metallurgy and Materials, 2021, 28(4): 729−737. doi: 10.1007/s12613-020-2138-5 |
[104] | 王欣悦. 利用镍铬混合型氧化矿合成特殊形貌硅酸盐材料[D]. 沈阳: 东北大学, 2020. WANG X Y. The special morphology of silicate materials was synthesized by Ni−Cr mixed oxide ore[D]. Shenyang: Northeastern University, 2020. |
[105] | 张闪闪, 张瀚文, 张钊, 等. 氧化锌矿废渣制备白炭黑的研究[J]. 有色矿冶, 2023, 39(2): 50−53+41. ZHANG S S, ZHANG H W, ZHANG Z, et al. Study on preparation of white carbon black from zinc oxide ore waste residue[J]. Non−Ferrous Mining and Metallurgy, 2023, 39(2): 50−53+41. |
Phase diagram in the ternary system of ZnSO4−(NH4)2SO4−H2O at 298 K
Technology diagram of cleaning and comprehensive utilization of zinc oxide ore by ammonium sulfate