Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 6
Article Contents

YIN Chen, BAI Limei, LI Shaoying, ZHAO Liucheng, MA Yuxin, SHAN Haoxuan. Research Progress of Comprehensive Utilization of Iron Tailings[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 41-53. doi: 10.13779/j.cnki.issn1001-0076.2023.06.005
Citation: YIN Chen, BAI Limei, LI Shaoying, ZHAO Liucheng, MA Yuxin, SHAN Haoxuan. Research Progress of Comprehensive Utilization of Iron Tailings[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 41-53. doi: 10.13779/j.cnki.issn1001-0076.2023.06.005

Research Progress of Comprehensive Utilization of Iron Tailings

More Information
  • At present, the storage capacity of iron tailings in China has reached over one billion tons. Not only the potential safety hazards of tailing dam and environments pollution will be produced, but also a large number of valuable components will be wasted. It does not meet the requirements of the country to build a resource−saving and environment−friendly society. Therefore, how to realize comprehensive utilization of secondary resources has become a research hotspot at present. In this paper, the classification of iron tailings is introduced first. Then, the research status of valuable elements recovery from iron tailings, the preparation of construction and filling materials, decorative materials, the preparation of fertilizers, soil amendments, chemical products are systematically summarized. Finally, the future development prospects of iron tailings utilization are discussed and the relevant suggestions are puts forward.

  • 加载中
  • [1] 吴浩. 我国尾矿资源综合利用研究进展与展望[J]. 资源信息与工程, 2022, 37(3): 102−104. doi: 10.3969/j.issn.2095-5391.2022.03.030

    CrossRef Google Scholar

    WU H. Research progress and prospect of comprehensive utilization of tailings resources in China[J]. Resource Information and Engineering, 2022, 37(3): 102−104. doi: 10.3969/j.issn.2095-5391.2022.03.030

    CrossRef Google Scholar

    [2] 邓文, 江登榜, 杨波, 等. 我国铁尾矿综合利用现状和存在的问题[J]. 现代矿业, 2012, 27(9): 1−3. doi: 10.3969/j.issn.1674-6082.2012.09.001

    CrossRef Google Scholar

    DENG W, JIANG D B, YANG B, et al. The current situation and existing problems of comprehensive utilization of iron tailings in China[J]. Modern Mining, 2012, 27(9): 1−3. doi: 10.3969/j.issn.1674-6082.2012.09.001

    CrossRef Google Scholar

    [3] 张淑会, 薛向欣, 金在峰. 我国铁尾矿的资源现状及其综合利用[J]. 材料与冶金学报, 2004(4): 241−245. doi: 10.3969/j.issn.1671-6620.2004.04.001

    CrossRef Google Scholar

    ZHANG S H, XUE X X, JIN Z F. Resource status and comprehensive utilization of iron tailings in China[J]. Journal of Materials and Metallurgy, 2004(4): 241−245. doi: 10.3969/j.issn.1671-6620.2004.04.001

    CrossRef Google Scholar

    [4] 郭丽东, 朱磊. 某磁铁矿选矿工艺试验研究[J]. 包钢科技, 2018, 44(3): 27−30. doi: 10.3969/j.issn.1009-5438.2018.03.007

    CrossRef Google Scholar

    GUO L D, ZHU L. Experimental study on beneficiation process of a magnetite[J]. Baotou Steel Science and Technology, 2018, 44(3): 27−30. doi: 10.3969/j.issn.1009-5438.2018.03.007

    CrossRef Google Scholar

    [5] CHAO L, SUN H, BAI J, et al. Innovative methodology for comprehensive utilization of iron ore tailings Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting[J]. Journal of Hazardous Materials, 2010, 174(1−3).

    Google Scholar

    [6] 戴惠新, 赵泓铭, 戴菲, 等. 云南某铁尾矿铁综合回收[J]. 矿冶, 2018, 27(5): 14−17+29. doi: 10.3969/j.issn.1005-7854.2018.05.004

    CrossRef Google Scholar

    DAI H X, ZHAO H M, DAI F, et al. Comprehensive recovery of iron tailings from Yunnan[J]. Mining and Metallurgy, 2018, 27(5): 14−17+29. doi: 10.3969/j.issn.1005-7854.2018.05.004

    CrossRef Google Scholar

    [7] 李素. 复配捕收剂对某铁尾矿浮选回收钛铁矿的研究[D]. 武汉: 武汉理工大学, 2020.

    Google Scholar

    LI S. Study on recovery of ilmenite by flotation of iron tailings with compound collector [D]. Wuhan: Wuhan University of Technology, 2020.

    Google Scholar

    [8] 邹锋, 殷志刚, 陈思竹. 攀枝花白马选铁尾矿综合回收利用研究[J]. 矿产综合利用, 2020(6): 19−25. doi: 10.3969/j.issn.1000-6532.2020.06.004

    CrossRef Google Scholar

    ZOU F, YIN Z G, CHEN S Z. Research on comprehensive recovery and utilization of irontailings from Baima in Panzhihua[J]. Comprehensive Utilization of Mineral Resources, 2020(6): 19−25. doi: 10.3969/j.issn.1000-6532.2020.06.004

    CrossRef Google Scholar

    [9] 郭艳华, 杨俊龙, 柏亚林, 等. 海水条件下秘鲁某选铁尾矿回收铜硫铁试验研究[J]. 有色金属(选矿部分), 2022(4): 74−79.

    Google Scholar

    GUO Y H, YANG J L, BAI Y L, et al. Experimental study on recovery of copper and sulfur iron from an iron−sorting tailings in Peru under seawater conditions[J]. Nonferrous Metals (Mineral Processing Section), 2022(4): 74−79.

    Google Scholar

    [10] 刘志国, 郭素红. 从某细粒铁尾矿中回收钴资源的选矿试验研究[J]. 有色金属(选矿部分), 2021(1): 83−87+100.

    Google Scholar

    LIU Z G, GUO S H. Experimental study on recovery of cobalt from a fine−grained iron tailings[J]. Nonferrous Metals (Mineral Processing Section), 2021(1): 83−87+100.

    Google Scholar

    [11] JIA Q M, LI F, WANG H. Experimental study on the recovery of the zinc from iron tailings in Hebei[J]. Advanced Materials Research, 2013, 2216: 641−642.

    Google Scholar

    [12] 张浩. 承德金盈矿业有限公司选铁尾矿选磷试验[J]. 现代矿业, 2021, 37(10): 133−134. doi: 10.3969/j.issn.1674-6082.2021.10.036

    CrossRef Google Scholar

    ZHANG H. Test of phosphorus separation from iron tailings of Chengde Jinying Mining Co., LTD[J]. Modern Mining, 2021, 37(10): 133−134. doi: 10.3969/j.issn.1674-6082.2021.10.036

    CrossRef Google Scholar

    [13] 王丽明, 李宏静, 白春霞, 等. 白云鄂博某选厂选铁尾矿中稀土和萤石的综合回收试验研究[J]. 矿产保护与利用, 2002, 42(6): 52−59. doi: 10.13779/j.cnki.issn1001-0076.2022.06.007

    CrossRef Google Scholar

    WANG L M, LI H J, BAI C X, et al. Experimental study on comprehensive recovery of rare earth and fluorite from iron tailings in Bayan Obo Processing plant[J]. Conservation and Utilization of Mineral Resources, 2002, 42(6): 52−59. doi: 10.13779/j.cnki.issn1001-0076.2022.06.007

    CrossRef Google Scholar

    [14] 李俊旺, 田明君, 呼振峰, 等. 安徽铁尾矿浮选回收云母试验研究[J]. 中国矿业, 2023, 32(2): 143−149. doi: 10.12075/j.issn.1004-4051.2023.02.010

    CrossRef Google Scholar

    LI J W, TIAN M J, HU Z F, et al. Experimental study on flotation recovery of mica from iron tailings in Anhui[J]. China Mining, 2023, 32(2): 143−149. doi: 10.12075/j.issn.1004-4051.2023.02.010

    CrossRef Google Scholar

    [15] 许晗, 徐彪, 陈煊年. 南芬铁尾矿回收石英试验研究[J]. 矿业工程, 2017, 15(5): 21−24. doi: 10.16672/j.cnki.kygc.2017.05.007

    CrossRef Google Scholar

    XU H, XU B, CHEN X X. Experimental study on quartz recovery from Nanfen iron tailings[J]. Mining Engineering, 2017, 15(5): 21−24. doi: 10.16672/j.cnki.kygc.2017.05.007

    CrossRef Google Scholar

    [16] 刘春光, 王丽明, 李宏静. 从内蒙古某铁选矿厂尾矿回收萤石研究[J]. 矿产保护与利 用, 2022, 42(6): 60−65.

    Google Scholar

    LIU C G, WANG L M, LI H J. Study on recovery of fluorite from tailings of an iron concentrator in Inner Mongolia[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 60−65.

    Google Scholar

    [17] 吴迪, 王洪岭, 孟庆波, 等. 内蒙古某多金属矿尾矿回收萤石实验研究[J]. 矿产综合利用, 2022(6): 155−158+166. doi: 10.3969/j.issn.1000-6532.2022.06.026

    CrossRef Google Scholar

    WU D, WANG H L, MENG Q B et al. Experimental study on recovery of fluorite from tailings of a polymetallic mine in Inner Mongolia[J]. Comprehensive Utilization of Mineral Resources, 2022(6): 155−158+166. doi: 10.3969/j.issn.1000-6532.2022.06.026

    CrossRef Google Scholar

    [18] 张帆, 管俊芳, 李小帆, 等. 磷矿选矿工艺和药剂的研究现状[J]. 中国非金属矿工业导刊, 2014(4): 25−28. doi: 10.3969/j.issn.1007-9386.2014.04.008

    CrossRef Google Scholar

    ZHANG F, GUAN J F, LI X F, et al. Research status of mineral processing technology and reagents for phosphate rock[J]. China Non−Metallic Mineral Industry Guide, 2014(4): 25−28. doi: 10.3969/j.issn.1007-9386.2014.04.008

    CrossRef Google Scholar

    [19] 霍松洋, 宋瑞杰, 罗世勇, 等. 承德某铁尾矿回收磷、钛的试验研究[J]. 世界有色金属, 2017(1): 35−36.

    Google Scholar

    HUO S Y, SONG R J, LUO S Y, et al. Experimental study on recovering phosphorus and titanium from an iron tailings in Chengde[J]. World Nonferrous Metals, 2017(1): 35−36.

    Google Scholar

    [20] LIU S X, WEI S. The preparation and micro mechanism of brick materials with iron tailings in Tanshang area[J]. Advanced Materials Research, 2013, 2526: 753−755.

    Google Scholar

    [21] 南晓杰, 王帅, 刘立伟, 等. 利用焙烧铁尾矿制备透水砖的水化特征研究[J]. 金属矿山, 2021(542): 208−213.

    Google Scholar

    NAN X J, WANG S, LIU L W, et al. Study on hydration characteristics of pervious brick prepared from roasted iron tailings[J]. Metal Mine, 2021(542): 208−213.

    Google Scholar

    [22] 王梓. 铁尾矿陶粒及免烧砖的制备及性能[D]. 马鞍山: 安徽工业大学, 2022.

    Google Scholar

    WANG Z. Preparation and properties of iron tailings ceramsite and baking−free brick [D]. Maanshan: Anhui University of Technology, 2022.

    Google Scholar

    [23] 刘俊杰, 梁钰, 曾宇, 等. 利用铁尾矿制备免烧砖的研究[J]. 矿产综合利用, 2020(225): 136−141. doi: 10.3969/j.issn.1000-6532.2020.05.021

    CrossRef Google Scholar

    LIU J J, LIANG Y, ZENG Y et al. Study on preparation of fire−free brick from iron tailings[J]. Comprehensive Utilization of Mineral Resources, 2020(225): 136−141. doi: 10.3969/j.issn.1000-6532.2020.05.021

    CrossRef Google Scholar

    [24] WU C, HONG Z, YIN Y, et al. Mechanical activated waste magnetite tailing as pozzolanic material substitute for cement in the preparation of cement products[J]. Construction and Building Materials, 2020, 252(C).

    Google Scholar

    [25] LIGNG H H, J J L, B S K, et al. Optimizing 1−hydroxyethylidene−1, 1−diphosphonic acid and mechanically−activated iron ore tailings to prepare low−cost and retarded magnesium oxysulfate cement[J]. Case Studies in Construction Materials, 2022, 17.

    Google Scholar

    [26] 易忠来, 孙恒虎, 李宇. 热活化对铁尾矿胶凝活性的影响[J]. 武汉理工大学学报, 2009, 31(12): 5−7+34. doi: 10.3963/j.issn.1671-4431.2009.12.002

    CrossRef Google Scholar

    YI Z L, SUN H H, LI Y. Effect of thermal activation on gelling activity of iron tailings[J]. Journal of Wuhan University of Technology, 2009, 31(12): 5−7+34. doi: 10.3963/j.issn.1671-4431.2009.12.002

    CrossRef Google Scholar

    [27] 杨鹏博. 铁尾矿活化工艺及其制备建筑用砖试验研究[D]. 唐山: 华北理工大学, 2020.

    Google Scholar

    YANG P B. Experimental study on activation process of iron Tailings and its preparation of building bricks[D]. Tanshan: North China University of Science and Technology, 2020.

    Google Scholar

    [28] 易龙生, 吴倩, 米宏成, 等. 利用铁尾矿制备发泡水泥[J]. 非金属矿, 2021, 44(1): 1−4. doi: 10.3969/j.issn.1000-8098.2021.01.001

    CrossRef Google Scholar

    YI L S, WU Q, MI H C, et al. Preparation of foamed cement from iron tailings[J]. Non−metallic Ore, 2021, 44(1): 1−4. doi: 10.3969/j.issn.1000-8098.2021.01.001

    CrossRef Google Scholar

    [29] 叶飞. 粉煤灰和铁尾矿砂对混凝土抗压强度及微观结构影响试验研究[J]. 福建建设科技, 2023(5): 56−58+69.

    Google Scholar

    YE F. Experimental study on the influence of fly ash and iron tailings on compressive strength and microstructure of concrete[J]. Fujian Construction Science and Technology, 2023(5): 56−58+69.

    Google Scholar

    [30] 袁益欣, 朱倩, 陈记豪, 等. 铁尾矿砂再生混凝土的力学性能试验研究[J]. 河南科技, 2022, 41(4): 78−81.

    Google Scholar

    YUAN Y X, ZHU Q, CHEN J H, et al. Experimental study on mechanical properties of recycled concrete with iron tailings[J]. Henan Science and Technology, 2022, 41(4): 78−81.

    Google Scholar

    [31] DUAN Y J, SUN J H, et al. Mix design and strength properties of full iron tailings concrete[J]. Journal of physics. Conference Series, 2020, 1637(1).

    Google Scholar

    [32] 吝晓然. 钒钛铁尾矿微粉作为掺合料制备预拌混凝土的研究[D]. 邯郸: 河北工程大学, 2019.

    Google Scholar

    LIN X R. Study on preparation of ready−mixed concrete from vanadium and titanium iron tailings fine powder as admixture [D]. HanDan: Hebei University of Technology, 2019.

    Google Scholar

    [33] 王绍熙. 铁尾矿复合胶凝材料的制备及性能研究[D]. 邯郸: 河北工程大学, 2022. WANG S X. Study on preparation and properties of composite cementing material of iron tailings [D]. HanDan: Hebei University of Technology, 2022.

    Google Scholar

    [34] WANG C H,XU C X,LI W H, et al. Preparation and properties of novel multi−component refractory cementitious materials[J]. Construction and Building Materials, 2023, 393: 132033.

    Google Scholar

    [35] 姜楠. 化学激发对铁尾矿胶凝特性及环保的影响[J]. 陕西水利, 2019(9): 214−217. doi: 10.16747/j.cnki.cn61-1109/tv.2019.09.085

    CrossRef Google Scholar

    JIANG N. Effect of chemical stimulation on the gelation characteristics andenvironmental protection of iron tailings[J]. Shaanxi Water Conservancy, 2019(9): 214−217. doi: 10.16747/j.cnki.cn61-1109/tv.2019.09.085

    CrossRef Google Scholar

    [36] WANG Z, CHEN H J, Yu C H, et al. Utilizing iron tailing, sludge and fly ash to prepare ceramsites[J]. Current Materials Science, 2020, 13.

    Google Scholar

    [37] YU C H , PEI L Z, MAO Y J, et al. Preparation and characterization of the ceramsites with microscale pores from iron tailing and fly ash[J]. Micro and Nanosystems, 2021, 13(4).

    Google Scholar

    [38] LI P W, LUO S H, ZHANG L, et al. Study on preparation and performance of iron tailings−based porous ceramsite filter materials for water treatment[J]. Separation and Purification Technology, 2021, 276.

    Google Scholar

    [39] 李育彪, 潘梦真, 蹇守卫, 等. 低硅铁尾矿制备轻质陶粒试验研究[J]. 矿产保护与利用, 2022, 42(6): 73−80. doi: 10.13779/j.cnki.issn1001-0076.2022.06.010

    CrossRef Google Scholar

    LI Y B, PAN M Z, JIAN S W, et al. Experimental study on preparation of light ceramsite from low−silicon iron tailings[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 73−80. doi: 10.13779/j.cnki.issn1001-0076.2022.06.010

    CrossRef Google Scholar

    [40] 熊哲. 铁矿尾矿砂填充颗粒的阻尼和隔声性能的研究[D]. 南昌: 南昌航空大学, 2016.

    Google Scholar

    XIONG Z. Research on damping and sound insulation properties of Iron ore tail sand filled particles [D]. Nanchang: Nanchang Hangkong University, 2016.

    Google Scholar

    [41] 常宁. 钒钛磁铁尾矿复合胶凝材料制备隔声板材的研究[D]. 邯郸: 河北工程大学, 2020.

    Google Scholar

    CHANG N. Study on the preparation of sound insulation plate from vanadium and titanium magnet tailings composite cementing material [D]. HanDan: Hebei University of Technology, 2020.

    Google Scholar

    [42] 石春华. 微纳铁尾矿砂吸隔声板的制备及其性能研究[D]. 南昌: 南昌航空大学, 2020.

    Google Scholar

    SHI C H. Study on the preparation and properties of micro−nano iron tail sand sound absorber plate [D]. Nanchang: Nanchang Hangkong University, 2020.

    Google Scholar

    [43] 王鹏昕. 微纳铁尾矿砂/SiO2气凝胶保温隔热建筑新材料的制备及其参数影响规律[D]. 南昌航空大学, 南昌: 2020.

    Google Scholar

    WANG P X. Preparation of a new thermal insulation building material with micro−nano iron tailings/SiO2 aerogel and its parameter influence [D]. Nanchang: Nanchang Hangkong University, 2020.

    Google Scholar

    [44] 陈永亮, 石磊, 杜金洋, 等. 铁尾矿轻质保温墙体材料的制备及性能研究[J]. 建筑材料报, 2019, 22(5): 721−729.

    Google Scholar

    CHEN Y L, SHI L, DU J Y, et al. Preparation and properties of lightweight insulation wall materials for iron tailings[J]. Journal of Building Materials, 2019, 22(5): 721−729.

    Google Scholar

    [45] 喻振贤, 李汇, 姜玉凤, 等. 铁尾矿制备阻燃型轻质保温墙体材料的研究[J]. 新型建筑料, 2013, 40(4): 30−33+36.

    Google Scholar

    YU Z X, LI H, JIANG Y F, et al. Research on preparation of flame−retardant lightweight insulation wall material from iron tailings[J]. New Building Materials, 2013, 40(4): 30−33+36.

    Google Scholar

    [46] 兰阳, 朱孝钦, 周新涛, 等. 尾矿回收的研究与应用[J]. 化工矿物与加工, 2017, 46(4): 76−81. doi: 10.16283/j.cnki.hgkwyjg.2017.04.020

    CrossRef Google Scholar

    LAN Y, ZHU X Q, ZHOU X T, et al. Research and application of tailings recovery[J]. Chemical Minerals and Processing, 2017, 46(4): 76−81. doi: 10.16283/j.cnki.hgkwyjg.2017.04.020

    CrossRef Google Scholar

    [47] 吴松泽, 周洋, 李润丰, 等. 铁尾矿及其反应烧结多孔陶瓷的制备与性能研究[J/OL]. 无机材料学报: 1−10

    Google Scholar

    2023−06−07]. WU S Z, ZHOU Y, LI R F, et al. Study on preparation and properties of porous ceramics from iron tailings and their reaction sintering [J/OL]. Journal of Inorganic Materials : 1−10[2023−06−07].

    Google Scholar

    [48] WANG H, SHANG J, YANG X. Study on preparation technology and properties of tiutai porous ceramics[J]. Ceramic Sciences and Engineering, 2018, 1(1).

    Google Scholar

    [49] 黎邦城, 石棋, 胡海明, 等. 程潮铁尾矿制备泡沫陶瓷的研究[J]. 中国陶瓷, 2014, 50(9): 82−86. doi: 10.16521/j.cnki.issn.1001-9642.2014.09.020

    CrossRef Google Scholar

    LI B C, SHI Q, HU H M, et al. Research on preparation of foam ceramics from Chengchao iron tailings[J]. China Ceramics, 2014, 50(9): 82−86. doi: 10.16521/j.cnki.issn.1001-9642.2014.09.020

    CrossRef Google Scholar

    [50] MENG J P, PENG J, SRINIVASAKANNAN C, et al. Preparation and properties of endothermic functional ceramics with iron tailings as raw materials[J]. Materials Research Express, 2020, 7(5): 055501. doi: 10.1088/2053-1591/ab8b8a

    CrossRef Google Scholar

    [51] WANG C L, Z Z R, Y C Z, et al. Effects of heat treatment system on mechanical strength and crystallinity of CaO−MgO−Al2O3−SiO2 glass−ceramics containing coal gangue and iron ore tailings[J]. Journal of New Materials for Electrochemical Systems, 2019, 22(2): 70−78.

    Google Scholar

    [52] LU X W,ZENG Z,LIU Y, et al. Crystallization characteristics and properties of glass ceramics derived from iron tailing[J]. Journal of Sustainable Metallurgy, 2022, 8(3): 1117−112.

    Google Scholar

    [53] MENG J P, LIU F, Srinivasakannan Chandrasekar, et al . Synthesis of schorl doped iron ore tailings glass−ceramics with superior performance[J]. Journal of Non−Crystalline Solids, 2023, 600: 122034.

    Google Scholar

    [54] 李彬, 郁世刚, 隋智通, 等. 铁尾矿黑色玻璃材料的研制[J]. 硅酸盐通报, 1998(1): 57−59. doi: 10.16552/j.cnki.issn1001-1625.1998.01.013

    CrossRef Google Scholar

    LI B, YU S G, SUI Z T, et al. Preparation of black glass materials from iron tailings[J]. Bulletin of Silicate, 1998(1): 57−59. doi: 10.16552/j.cnki.issn1001-1625.1998.01.013

    CrossRef Google Scholar

    [55] YIN H R, MA M, BAI J, et al. Fabrication of foam glass from iron tailings[J]. Materials Letters, 2016, 185511−513.

    Google Scholar

    [56] 王梦婵, 张惠灵, 陈永亮, 等. 利用低硅铁尾矿制备地质聚合物的研究[J]. 中国矿业, 2019, 28(8): 170−176. doi: 10.12075/j.issn.1004-4051.2019.08.010

    CrossRef Google Scholar

    WANG M C, ZHANG H L, CHEN Y L, et al. Preparation of geopolymers from low−silicon iron tailings[J]. China Mining, 2019, 28(8): 170−176. doi: 10.12075/j.issn.1004-4051.2019.08.010

    CrossRef Google Scholar

    [57] 刘益良, 李祥涛, 黄兴鹏, 等. 纤维增强铁尾矿砂水泥基充填材料实验研究[J]. 北华航天工业学院学报, 2023, 33(2): 10−12. doi: 10.3969/j.issn.1673-7938.2023.02.004

    CrossRef Google Scholar

    LIU Y L, LI X T, HUANG X P, et al. Experimental study on fiber−reinforced iron tail sand cement−based filling materials[J]. Journal of Beichina Institute of Astronautics and Astronautics, 2023, 33(2): 10−12. doi: 10.3969/j.issn.1673-7938.2023.02.004

    CrossRef Google Scholar

    [58] 王剑云, 柯懿耘, 温建峰, 等. 微生物菌体对砂浆疏水性能的提升及机理分析[J]. 硅酸盐学报, 2023, 51(5): 1165−1173. doi: 10.14062/j.issn.0454-5648.20221031

    CrossRef Google Scholar

    WANG J Y, KE Y Y, WEN G F, et al. Improvement and mechanism analysis of hydrophobic properties of mortar by microbe[J]. Journal of Silicate Science, 2023, 51(5): 1165−1173. doi: 10.14062/j.issn.0454-5648.20221031

    CrossRef Google Scholar

    [59] V POORNIMA, R VENKATASUBRAMANI, V SREEVIDYA, et al. Effect of microbial solution on compressive strength, water absorption and sorptivity of cement mortar incorporated with metakaolin[J]. IOP Conference Series Materials Science and Engineering, 2020, 872(1): 012173.

    Google Scholar

    [60] 杨光磊, 刘凯. 掺黏土铁尾矿砂路基填筑路用性能研究[J]. 山西建筑, 2022, 48(15): 13.115−118. doi: 10.13719/j.cnki.1009-6825.2022.15.030

    CrossRef Google Scholar

    YANG G L, LIU K. Mixed clay ore iron tail road subgrade filling study[J]. Journal of Shanxi Architecture, 2022, 48(15): 13.115−118. doi: 10.13719/j.cnki.1009-6825.2022.15.030

    CrossRef Google Scholar

    [61] 韦奔. 唐山市农村公路路面典型结构研究[D]. 西安: 长安大学, 2008.

    Google Scholar

    WEI B. Study on typical structure of rural road pavement in Tangshan city [D]. Xian: Chang 'an University, 2008.

    Google Scholar

    [62] 张智豪, 李波, 李鹏, 等. 改良铁尾矿用于道路基层材料的研究[J]. 中外公路, 2018, 38(3): 274−278. doi: 10.14048/j.issn.1671-2579.2018.03.056

    CrossRef Google Scholar

    ZHANG Z H, LI B, LI P, et al. Research on improving iron tailings for road base materials[J]. Zhongba Road, 2018, 38(3): 274−278. doi: 10.14048/j.issn.1671-2579.2018.03.056

    CrossRef Google Scholar

    [63] 刘圣洁, 唐亮, 赵硕, 等. 铁尾矿沥青混合料的路用性能[J]. 山东交通学院学报, 2023, 31(3): 81−86.

    Google Scholar

    LIU S J, TANG L, ZHAO S, et al. Road performance of iron tailings asphalt mixture[J]. Journal of Shandong Jiaotong University, 2023, 31(3): 81−86.

    Google Scholar

    [64] 赵连平, 郝绍菊, 马竞. 铁尾矿沥青混合料基本性能及老化耐久性研究[J]. 矿产综合利用, 2022(4): 111−118. doi: 10.3969/j.issn.1000-6532.2022.04.020

    CrossRef Google Scholar

    ZHAO L P, HAO S J, MA J. Study on basic properties and aging durability of asphalt mixture of iron tailings[J]. Comprehensive Utilization of Mineral Resources, 2022(4): 111−118. doi: 10.3969/j.issn.1000-6532.2022.04.020

    CrossRef Google Scholar

    [65] JIANG P, CHEN L J, LI N, et al. Study on the mechanical properties of fiber−modified iron tailings stabilized by lime and fly ash based on energy analysis[J]. Case Studies in Construction Materials, 2022, 17.

    Google Scholar

    [66] 刘代俊, 邱礼有, 蒋绍志, 等. 磷矿资源加工研究进展: 5. 利用磷铁尾矿直接生产复合肥的MUSP新工艺[J]. 磷肥与复肥, 2009, 24(4): 18−19. doi: 10.3969/j.issn.1007-6220.2009.04.004

    CrossRef Google Scholar

    LIU D J, QIU L Y, JIANG S Z et al. Research progress of phosphate mineral resources processing: 5. New MUSP process for direct production of compound fertilizer from phosphorus iron tailings[J]. Phosphate and Compound Fertilizer, 2009, 24(4): 18−19. doi: 10.3969/j.issn.1007-6220.2009.04.004

    CrossRef Google Scholar

    [67] 赵淑芳, 王浩明, 高玉倩, 等. 开发含高硅铁尾矿硅肥试验研究初探[J]. 矿产综合利用, 2018(5): 126−130. doi: 10.3969/j.issn.1000-6532.2018.05.028

    CrossRef Google Scholar

    ZHAO S F, WANG H M, GAO Y Q, et al. Preliminary study on the development of silicon fertilizer in tailings containing high silicon iron[J]. Comprehensive Utilization of Mineral Resources, 2018(5): 126−130. doi: 10.3969/j.issn.1000-6532.2018.05.028

    CrossRef Google Scholar

    [68] 丁文金, 李丁, 马友华, 等. 磁化复混肥料的磁化工艺及磁性稳定性研究[J]. 磷肥与复肥, 2014, 29(2): 13−15. doi: 10.3969/j.issn.1007-6220.2014.02.005

    CrossRef Google Scholar

    DING W J, LI D, MA Y H, et al. Study on magnetization process and magnetic stability of magnetized compound fertilizer[J]. Phosphate and Compound Fertilizer, 2014, 29(2): 13−15. doi: 10.3969/j.issn.1007-6220.2014.02.005

    CrossRef Google Scholar

    [69] 李丁. 缓释磁化复混肥料研制及肥效研究与应用[D]. 合肥: 安徽农业大学, 2014.

    Google Scholar

    LI D. Development and fertilizer efficiency research and application of slow release magnetized compound fertilizer [D]. Hefei: Anhui Agricultural University, 2014.

    Google Scholar

    [70] 张丛香, 刘润华, 刘双安, 等. 利用铁尾矿改良苏打盐碱地技术研究与应用[J]. 矿业工程, 2016, 14(1): 39−41. doi: 10.3969/j.issn.1671-8550.2016.01.013

    CrossRef Google Scholar

    ZHANG C X, LIU R H, LIU S G, et al. Research and application of improving soda saline−alkali land with iron tailings[J]. Mining Engineering, 2016, 14(1): 39−41. doi: 10.3969/j.issn.1671-8550.2016.01.013

    CrossRef Google Scholar

    [71] 孙希乐, 安卫东, 张韬, 等. 利用铁尾矿和副产品云母粉、白云石制备土壤调理剂试验研究[J]. 金属矿山, 2018(6): 192−196. doi: 10.19614/j.cnki.jsks.201806036

    CrossRef Google Scholar

    SUN X L, AN W D, ZHANG T, et al. Experimental study on preparation of soil conditioner from iron tailings and by−products mica powder and dolomite[J]. Metal Mine, 2018(6): 192−196. doi: 10.19614/j.cnki.jsks.201806036

    CrossRef Google Scholar

    [72] JIN W J, WEI Z, LIU X, et al. Effects of constructing farmland with large amounts of iron tailings as soil reconstruction materials on soil properties and crop growth[J]. Scientific Reports, 2022, 12(1): 20205−20205.

    Google Scholar

    [73] 许小东. 铁尾矿合成Fe−SBA−15介孔材料及其性能研究[D]. 北京: 中国地质大学(北京), 2019.

    Google Scholar

    XU X D. Synthesis of Fe−SBA−15 mesoporous materials from iron tailings and their properties [D]. Beijing: China University of Geosciences (Beijing), 2019.

    Google Scholar

    [74] 林志祥. 铁尾矿中有价元素的提取及合成改性SBA−16介孔分子筛[D]. 北京: 中国地质大学(北京), 2017.

    Google Scholar

    LIN Z X. Extraction of valuable elements from iron tailings and synthesis of modified SBA−16 mesoporous molecular sieve [D]. Beijing: China University of Geosciences (Beijing), 2017.

    Google Scholar

    [75] LU C, ZHANG S L, WANG J, et al. Efficient activation of peroxymonosulfate by iron−containing mesoporous silica catalysts derived from iron tailings for degradation of organic pollutants[J]. Chemical Engineering Journal, 2022, 446(P1).

    Google Scholar

    [76] GAO L, WANG L H, LI S, et al. Highly active fenton−like catalyst derived from solid waste−iron ore tailings using wheat straw pyrolysis[J]. Environmental Science and Pollution Research International, 2022, 29(21): 31577−31577.

    Google Scholar

    [77] 韩云龙, 李迎根, 郑昭, 等. 铁矿石尾矿粉催化还原 NO 的实验研究[J]. 过程工程学报, 2018, 18(2): 350−355. doi: 10.12034/j.issn.1009-606X.217266

    CrossRef Google Scholar

    HAN Y L, LI Y G, ZHENG Z, et al. Experimental study on catalytic reduction of NO by iron ore tailings powder[J]. Chinese Journal of Process Engineering, 2018, 18(2): 350−355. doi: 10.12034/j.issn.1009-606X.217266

    CrossRef Google Scholar

    [78] 任明昊, 谢贤, 李博琦, 等. 铁尾矿综合利用研究进展[J]. 矿产保护与利用, 2022, 42(3): 155−168.

    Google Scholar

    REN M H, XIE X, LI B Q, et al. Iron tailings comprehensive utilization research progress [J]. Journal of Minerals, the Protection and Use, and 2022 (3): 155−168. DOI: 10.13779/j.carol carroll nki issn1001−0076.2022.03.022.

    Google Scholar

    [79] 唐伟博. 改性多孔陶粒在水处理中的应用研究[D]. 景德镇: 景德镇陶瓷大学, 2020.

    Google Scholar

    TANG W B. Application of modified porous ceramics in water treatment [D]. Jingdezhen: Jingdezhen Ceramic University, 2020.

    Google Scholar

    [80] 任康辉. 铁尾矿—生物炭复合材料的制备及Cr(Ⅵ)吸附性能研究[D]. 兰州: 兰州大学, 2023.

    Google Scholar

    REN K H. Study on the preparation and Cr (Ⅵ) adsorption properties of iron tailings and biochar composites [D]. Lanzhou: Lanzhou University, 2023.

    Google Scholar

    [81] 苏琳, 刘双, 程煜昊, 等. 以铁尾矿为原料制备微/纳米结构白炭黑和氧化铁[J]. 沈阳理工大学学报, 2016, 35(2): 90−95. doi: 10.3969/j.issn.1003-1251.2016.02.019

    CrossRef Google Scholar

    SU L, LIU S, CHENG Y H, et al. Preparation of micro/nano−structured white carbon black and iron oxide from iron tailings[J]. Journal of Shenyang University of Technology, 2016, 35(2): 90−95. doi: 10.3969/j.issn.1003-1251.2016.02.019

    CrossRef Google Scholar

    [82] 张鹏, 陈星月, 任志峰, 等. 铁尾矿煅烧酸浸法制备白炭黑及动力学研究[J]. 钢铁钒钛, 2022, 43(2): 87−93.

    Google Scholar

    ZHANG P, CHEN X Y, REN Z F, et al. Study on preparation of white carbon black by calcination and acid leaching of iron tailings and its kinetics [J]. Iron and Steel, Vanadium and Titanium, 2022, 43(2): 87−93.

    Google Scholar

    [83] 洪陆阔, 孙彩娇, 武兵强, 等. 以铁尾矿为调质剂改善高炉渣成纤性研究[J]. 金属矿山, 2017(8): 209−212. doi: 10.3969/j.issn.1001-1250.2017.08.038

    CrossRef Google Scholar

    HONG L K, SUN C J, WU B Q, et al. Study on improving fiber formation of blast−furnace slag with iron tailings as tempering agent[J]. Metal Mine, 2017(8): 209−212. doi: 10.3969/j.issn.1001-1250.2017.08.038

    CrossRef Google Scholar

    [84] 李新健. 铜/铁尾矿制备3D打印建筑材料及性能研究[D]. 北京: 中国地质大学(北京), 2020.

    Google Scholar

    LI X J. Research on 3D printing construction materials and properties of copper/iron tailings [D]. Beijing: China University of Geosciences (Beijing), 2020.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(1)

Article Metrics

Article views(659) PDF downloads(26) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint