Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 5
Article Contents

RUI Zi, TONG Xiong, XIE Xian, XIE Ruiqi. Research Progress on Enhanced Leaching Technology of Low—grade Uranium Resources[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 163-169. doi: 10.13779/j.cnki.issn1001-0076.2023.05.017
Citation: RUI Zi, TONG Xiong, XIE Xian, XIE Ruiqi. Research Progress on Enhanced Leaching Technology of Low—grade Uranium Resources[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 163-169. doi: 10.13779/j.cnki.issn1001-0076.2023.05.017

Research Progress on Enhanced Leaching Technology of Low—grade Uranium Resources

More Information
  • Low-grade uranium resources are abandoned in the process of uranium mine development, resulting in serious environmental pollution and resource waste. The conventional leaching technology cannot effectively extract uranium from low-grade uranium resources such as low-grade uranium primary ore, uranium tailings, uranium leaching slag, and uranium-containing waste slag. Therefore, the enhanced leaching technology of low-grade uranium resources extraction attracts more attention. The research progress of eight leaching technologies and leaching mechanisms including oxidation leaching, roasting leaching, microwave-assisted leaching, ultrasonic-assisted leaching, microbial leaching, and pressure leaching are introduced. The green and efficient research direction of low-grade uranium resources leaching technology is summarized, which provides a reference for improving the uranium leaching rate and solving the problem that conventional technology cannot effectively extract uranium from low-grade uranium resources.

  • 加载中
  • [1] LIU J, XIE S, WANG Y, et al. U(Ⅵ) reduction by Shewanella oneidensis mediated by anthraquinone-2-sulfonate[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(12): 4144−4150. doi: 10.1016/S1003-6326(15)64080-8

    CrossRef Google Scholar

    [2] 邓文静, 周书葵, 刘迎九, 等. 木屑季铵螯合吸附剂的制备及其吸附铀矿酸法废水中U(Ⅵ)[J]. 中国有色金属学报, 2015, 25(9): 2604−2611.

    Google Scholar

    DENG W J, ZHOU S K, LIU Y J, et al. Preparation of quaternary ammonium salt modified sawdust chelate adsorbent and its U(Ⅵ) adsorption in wastewater from uranium milling plant[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(9): 2604−2611.

    Google Scholar

    [3] 张彪, 张晓文, 李密, 等. 铀尾矿污染特征及综合治理技术研究进展[J]. 中国矿业, 2015, 24(4): 58−62.

    Google Scholar

    ZHANG B, ZHANG X, LI M. The characteristics and research progress of uranium tailings comprehensive treatment techniques[J]. China Mining Magazine, 2015, 24(4): 58−62.

    Google Scholar

    [4] 徐磊, 钱建平, 唐专武. 我国铀矿废渣石污染特点及治理方法[J]. 中国矿业, 2013, 22(1): 61−64.

    Google Scholar

    XU L, QIAN J P, TANG Z W. A study of features and methodology of waste treatment in uranium mines of China[J]. China Mining Magazine, 2013, 22(1): 61−64.

    Google Scholar

    [5] JAMES M, CARTER M L, ZHANG Z, et al. Crystal chemistry and structures of (Ca, U) titanate pyrochlores[J]. Journal of the American Ceramic Society, 2010, 93(10): 3464−3473. doi: 10.1111/j.1551-2916.2010.03871.x

    CrossRef Google Scholar

    [6] RAM R, CHARALAMBOUS F A, MCMASTER S, et al. An investigation on the dissolution of natural uraninite ores[J]. Minerals Engineering, 2013, 50: 83−92.

    Google Scholar

    [7] 王志章. 铀尾矿处置的实践和认识[J]. 铀矿冶, 2009, 28(1): 22−25. doi: 10.13426/j.cnki.yky.2009.01.015

    CrossRef Google Scholar

    WANG Z Z. The practice and knowledge of uranium tailings disposal[J]. Uranium Mining and Metallurgy, 2009, 28(1): 22−25. doi: 10.13426/j.cnki.yky.2009.01.015

    CrossRef Google Scholar

    [8] 赵宁. 含铀碱渣浸取及其浸出液的过氧化氢沉淀[D]. 北京: 清华大学, 2008.

    Google Scholar

    ZHAO N. Leaching of uraniferous alkalescence dreg and hydrogen peroxide precipitation of lixivium[D]. Beijing: Tsinghua University, 2008.

    Google Scholar

    [9] 许娜. 高品位含铀碱渣铀的浸出工艺试验研究[D]. 衡阳: 南华大学, 2018.

    Google Scholar

    XU N. Experimental study on leaching process of uranium with high grade uraniferous alkalescence dreg[D]. Hengyang: University of South China, 2018

    Google Scholar

    [10] 张彪. 铀尾矿氧化强化浸出工艺研究[D]. 衡阳: 南华大学, 2016.

    Google Scholar

    ZHANG B. Investigation to intensified uranium extraction from uranium tailings using oxidants[D]. Hengyang: University of South China, 2016

    Google Scholar

    [11] 德里, 高席丰, 郭世奎. 借助细菌作用的铀矿石浸出方法[J]. 铀矿冶, 1979(1): 7−15.

    Google Scholar

    DERRY R, GAO X F, GUO S K. A method of leaching uranium ore with the help of bacterial action[J]. Uranium Mining and Metallurgy, 1979(1): 7−15.

    Google Scholar

    [12] 李密, 张彪, 张晓文, 等. 从低品位铀尾矿中氧化浸出铀[J]. 中国有色金属学报, 2017, 27(1): 145−154.

    Google Scholar

    LI M, ZHANG B, ZHANG X W, et al. Oxidizing leaching of uranium from low-grade uranium tailings[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(1): 145−154.

    Google Scholar

    [13] 李密, 黄婧, 戴士祥, 等. 采用HF和HClO4从铀尾矿中浸出铀的试验研究[J]. 中国矿业大学学报, 2016, 45(3): 639−645.

    Google Scholar

    LI M, HUANG J, DAI S X, et al. Extraction of uranium from uranium tailings by acid leaching with HF and HClO4[J]. Journal of China University of Mining & Technology, 2016, 45(3): 639−645.

    Google Scholar

    [14] CHARALAMBOUS F A, RAM R, MCMASTER S, et al. Leaching behaviour of natural and heat-treated brannerite-containing uranium ores in sulphate solutions with iron(Ⅲ)[J]. Minerals Engineering, 2014, 57: 25−35. doi: 10.1016/j.mineng.2013.12.007

    CrossRef Google Scholar

    [15] 沈川, 李江, 张洪利, 等. 某铀矿石不同氧化剂浸出对比试验[J]. 科技与企业, 2012(7): 319.

    Google Scholar

    SHENG C, LI J, ZHANG H L, et al. Comparative test of leaching of different oxidants of a uranium ore[J]. Technology and Enterprise, 2012(7): 319.

    Google Scholar

    [16] 程威, 段忠武, 李建华, 等. 某铀精矿酸法搅拌浸出氧化剂的选择[J]. 铀矿冶, 2009, 28(3): 122−125.

    Google Scholar

    CHENG W, DUAN Z W, LI J H, et al. Choice of leaching agent in acid agitation leaching of a uranium ore[J]. Uranium Mining and Metallurgy, 2009, 28(3): 122−125.

    Google Scholar

    [17] SANTOS E A, LADEIRA A C Q. Recovery of uranium from mine waste by leaching with carbonate-based reagents[J]. Environmental science & technology, 2011, 45(8): 3591−3597.

    Google Scholar

    [18] 张聪, 王清良, 周龙, 等. 难溶含铀碱渣氧化焙烧酸浸试验研究[J]. 矿冶工程, 2022, 42(4): 116−119.

    Google Scholar

    ZHANG C, WANG Q L, ZHOU L, et al. Experimental study on treating refractory alkaline uranium-containing residue by oxidative roasting and acid leaching[J]. Mining and Metallurgical Engineering, 2022, 42(4): 116−119.

    Google Scholar

    [19] YUBO G, ZHONGKUI Z, JIAMIN L, et al. Combined use of CaCl2 roasting and nitric acid leaching for the removal of uranium and radioactivity from uranium tailings[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 325(2): 657−665. doi: 10.1007/s10967-020-07272-9

    CrossRef Google Scholar

    [20] ZHONG C, XU C, LYU R, et al. Enhancing mineral liberation of a Canadian rare earth ore with microwave pretreatment[J]. Journal of Rare Earths, 2018, 36(2): 215−224. doi: 10.1016/j.jre.2017.08.007

    CrossRef Google Scholar

    [21] 陈伟, 丁德馨, 胡南, 等. 微波焙烧预处理难浸含金硫精矿[J]. 中国有色金属学报, 2015, 25(7): 2000−2005.

    Google Scholar

    CHEN W, DING D X, HU N, et al. Pretreatment of refractory gold bearing sulfur concentrates by microwave roasting[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(7): 2000−2005.

    Google Scholar

    [22] KINGMAN S W, JACKSON K, BRADSHAW S M, et al. An investigation into the influence of microwave treatment on mineral ore comminution[J]. Powder technology, 2004, 146(3): 176−184.

    Google Scholar

    [23] 郑大中, 郑若峰, 刘红英. 微波辐射在提取铀金及环境保护中的应用[J]. 湿法冶金, 2002(2): 62−65. DOI: 10.13355/j.cnki.sfyj.2002.02.003.

    Google Scholar

    ZHENG D Z, ZHENG R F, LIU H Y. Application of microwave irradiation in extracting of gold uranium and environmental protection[J]. Hydrometallurgy of China, 2002(2):62−65. DOI: 10.13355/j.cnki.sfyj. 2002.02.003.

    Google Scholar

    [24] CHARIKINYA E, BRADSHAW S, BECKER M. Characterising and quantifying microwave induced damage in coarse sphalerite ore particles[J]. Minerals Engineering, 2015, 82: 14−24. doi: 10.1016/j.mineng.2015.07.020

    CrossRef Google Scholar

    [25] OLUBAMBI P A, POTGIETER J H, HWAMG J Y, et al. Influence of microwave heating on the processing and dissolution behaviour of low-grade complex sulphide ores[J]. Hydrometallurgy, 2007, 89(1/2): 127−135. doi: 10.1016/j.hydromet.2007.07.010

    CrossRef Google Scholar

    [26] KUMAR P, SAHOO B K, DE S, et al. Iron ore grindability improvement by microwave pre-treatment[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(5): 805−812. doi: 10.1016/j.jiec.2010.05.008

    CrossRef Google Scholar

    [27] JAVAD S M, BARANI K, REZAEI B. The effect of microwave treatment on dry grinding kinetics of iron ore[J]. Mineral Processing and Extractive Metallurgy Review, 2012, 33(3): 159−169. doi: 10.1080/08827508.2011.562947

    CrossRef Google Scholar

    [28] 付润泽, 朱红波, 彭金辉, 等. 采用微波助磨技术处理惠民铁矿的研究[J]. 矿产综合利用, 2012(2): 24−27. doi: 10.3969/j.issn.1000-6532.2012.02.007

    CrossRef Google Scholar

    FU R Z, ZHU H B, PENG J H, et al. Microwave-assisted grinding of Huimin iron ore[J]. Multipurpose Utilization of Mineral Resources, 2012(2): 24−27. doi: 10.3969/j.issn.1000-6532.2012.02.007

    CrossRef Google Scholar

    [29] 杨雨山, 喻清, 胡南, 等. 微波预处理对堆浸铀尾渣中铀浸出行为的影响及机理[J]. 中国有色金属学报, 2016, 26(6): 1356−1363.

    Google Scholar

    YANG Y S, YU Q, HU N, et al. Effect of microwave pretreatment on leaching behavior of uranium in heap-leached uranium tailings and its mechanism[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(6): 1356−1363.

    Google Scholar

    [30] 杨雨山, 喻清, 胡南, 等. 微波加热预处理堆浸铀矿石[J]. 稀有金属, 2016, 40(3): 280−286.

    Google Scholar

    YANG Y S, YU Q, HU N, et al. Heap leaching uranium ore pretreated by microwave radiation[J]. Chinese Journal of Rare Metals, 2016, 40(3): 280−286.

    Google Scholar

    [31] MADAKKARUPPAN, PIUS A, SREENIVAS T, et al. Influence of microwaves on the leaching kinetics of uraninite from a low grade ore in dilute sulfuric acid[J]. Journal of Hazardous Materials, 2016, 313: 9−17. doi: 10.1016/j.jhazmat.2016.03.050

    CrossRef Google Scholar

    [32] 廖炳友, 王学刚, 刘超, 等. 微波氯化焙烧对低品位铀矿浸出的影响[J]. 有色金属(冶炼部分), 2021(8): 106−110.

    Google Scholar

    LIAO B Y, WANG X G, LIU C, et al. Effect of microwave chlorination roasting on leaching of low-grade uranium ore[J]. Nonferrous Metals(Extractive Metallurgy), 2021(8): 106−110.

    Google Scholar

    [33] 孙家寿, 罗惠华. 超声波作用下FeCl3浸出硫化铜精矿的研究[J]. 湿法冶金, 1999(1): 22−24.

    Google Scholar

    SUN J S, LUO H H. Study on the leaching of copper sulfide concentrate by FeCl3 under ultrasonic action[J]. Hydrometallurgy of China, 1999(1): 22−24.

    Google Scholar

    [34] 赵文焕. 超声波强化浸出(PUL法)银精矿中金银的研究[J]. 矿冶, 1995, 4(3): 60−66.

    Google Scholar

    ZHAO W H. Study on process of ultrasonic-aided leaching of gold and silver from silver concentrates[J]. Mining and Metallurgy, 1995, 4(3): 60−66.

    Google Scholar

    [35] LADOLA Y S, CHOWDHURY S, ROY S B, et al. Application of cavitation in uranium leaching[J]. Desalination and Water Treatment, 2014, 52(1/2/3): 407−414. doi: 10.1080/19443994.2013.808792

    CrossRef Google Scholar

    [36] 冯若, 李化茂. 声化学及其应用[M]. 合肥: 安徽科学技术出版社, 1992: 3

    Google Scholar

    FENG R, LI H M. Acoustic chemistry and its applications[M]. Hefei: Anhui Science and Technology Press, 1992: 3

    Google Scholar

    [37] 张龙力, 杨国华, 孙在春, 等. 超声波对沥青质分散作用的研究进展[J]. 应用声学, 2002, 21(2): 30−34.

    Google Scholar

    ZHANG L L, YANG G H, SUN Z C, et al. Progress in using ultrasound in asphaltene dispersing[J]. Applied Acoustics, 2002, 21(2): 30−34.

    Google Scholar

    [38] AVVARU B, ROY S B, CHOWDHURY S, et al. Enhancement of the leaching rate of uranium in the presence of ultrasound[J]. Industrial & engineering chemistry research, 2006, 45(22): 7639−7648.

    Google Scholar

    [39] AVVARU B, ROY S B, LADOLA Y, et al. Sono-chemical leaching of uranium[J]. Chemical Engineering and Processing:Process Intensification, 2008, 47(12): 2107−2113. doi: 10.1016/j.cep.2007.10.021

    CrossRef Google Scholar

    [40] WALTER M, ARNOLD T, GEIPEL G, et al. An EXAFS and TRLFS investigation on uranium (Ⅵ) sorption to pristine and leached albite surfaces[J]. Journal of Colloid and Interface Science, 2005, 282(2): 293−305. doi: 10.1016/j.jcis.2004.08.133

    CrossRef Google Scholar

    [41] 李乾. 低品位铀矿生物浸出及浸矿菌种耐氟机理研究[D]. 长沙: 中南大学, 2012.

    Google Scholar

    LI Q. Research on bioleaching of low-grade uranium-bearing ores and fluoride-tolerant mechanism of bioleaching microorganisms[D]. Changsha: Central South University, 2012.

    Google Scholar

    [42] 华国欢, 孙占学, 李江, 等. 铀矿尾渣微生物堆浸试验[J]. 有色金属(冶炼部分), 2016(5): 26−28.

    Google Scholar

    HUA G H, SUN Z X, LI J, et al. Test of microbial heap leaching of uranium tailings[J]. Nonferrous Metals(Extractive Metallurgy), 2016(5): 26−28.

    Google Scholar

    [43] 王学刚, 刘金辉, 李学礼, 等. 低品位铀矿石细菌浸出试验研究[J]. 金属矿山, 2009, 39(11): 179−182.

    Google Scholar

    WANG X G, LIU J H, LI X L, et al. Bioleaching of uranium from lower grade uranium ores[J]. Metal Mine, 2009, 39(11): 179−182.

    Google Scholar

    [44] 黄春梅. 酸碱联合浸出低品位铀矿中铀的实验研究[D]. 衡阳: 南华大学, 2019.

    Google Scholar

    HUANG C M. Research on leaching of uranium by dilute alkali-pretreatment combined with acid leaching from low-grade uranium ore[D]. Hengyang: University of South China, 2018

    Google Scholar

    [45] 高仁喜, 田原, 关自斌. 铀矿石加压浸出技术的进展[J]. 铀矿冶, 1999(3): 171−178. doi: 10.13426/j.cnki.yky.1999.03.006

    CrossRef Google Scholar

    GAO R X, TIAN Y, GUAN Z B. The technological development of pressure leaching process for uranium ore[J]. Uranium Mining and Metallurgy, 1999(3): 171−178. doi: 10.13426/j.cnki.yky.1999.03.006

    CrossRef Google Scholar

    [46] 常喜信, 钟平汝, 李铁球, 等. 含钛难处理铀矿石浸出工艺研究[J]. 铀矿冶, 2021, 40(2): 123−127. doi: 10.13426/j.cnki.yky.2021.02.006

    CrossRef Google Scholar

    CHANG X X, ZHONG P R, LI T Q, et al. Leaching process of titanium-bearing refractory uranium ore[J]. Uranium Mining and Metallurgy, 2021, 40(2): 123−127. doi: 10.13426/j.cnki.yky.2021.02.006

    CrossRef Google Scholar

    [47] 周龙, 王清良, 刘进平, 等. 含铀难浸碱渣加温加压强化浸出试验研究[J]. 矿冶工程, 2022, 42(3): 96-99.

    Google Scholar

    ZHOU L, WANG Q L, LIU J P, et al. Experimental study on pressure leaching of uranium-containing alkaline residue[J]. Mining and Metallurgical Engineering, 2022, 42(3): 96-99.

    Google Scholar

    [48] 黄婧. 电辅助强化浸出低品位铀矿中铀的实验研究[D]. 衡阳: 南华大学, 2018.

    Google Scholar

    HUANG J. Experimental study on enhanced uranium leaching from low-grade uranium ore by electric-assisted method[D]. Hengyang: University of South China, 2018

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(358) PDF downloads(19) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint