Citation: | AO Shunfu. Research Progress of Lead−zinc Ore Separation Process, Reagents and Equipments[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 146-162. doi: 10.13779/j.cnki.issn1001-0076.2023.05.016 |
Lead and zinc are key basic raw materials for modern social and economic development. With the rapid growth of the economy, the demand for lead and zinc increases gradually, and the efficient recycling and utilization of complex lead and zinc mineral resources is becoming increasingly urgent. The effects of the variable floatability of lead-zinc minerals, overgrinding or dissociation difficulty for useful minerals, complex separation and recovery of associated useful components, metal ions, and deterioration of slurry environment by ore mud in lead-zinc beneficiation are reviewed. The research and application progress of the crushing and grinding process, beneficiation process, beneficiation reagents, and beneficiation equipment are summarized. Based on this, it is pointed out that the traditional crushing and ball milling process, consisting of more crushing and less grinding, brings in rod milling, semi-automatic milling, stirring milling, and high-pressure roller milling, forming unique crushing and grinding processes, and has become an important way to simplify the process, save energy, reduce consumption, expand production and increase capacity in lead-zinc beneficiation. Flotation is still the most effective and widely used beneficiation method for lead-zinc ore. Base on the differences in the natural floatability of minerals, a suitable flotation process is the key to efficient separation of minerals. flotation as the main method, combined with gravity separation, magnetic separation, sorting separation, and smelting, and fully utilizing the advantages of combined processes are an important development trend for lead-zinc beneficiation. The research and application of novel reagents and the combination of conventional reagents, especially the collectors with strong collection performance and good selectivity, as well as environmentally friendly, low-cost, and efficient inhibitors and activators, are always been the basic guarantee for clean and efficient recovery of lead-zinc ore. Combining the properties of the ore and the production scale of the beneficiation plant, the suitable uses of semi-automatic mills, high-pressure roller mills, mobile crusher stations, stirring mills, and flotation columns, are of great significance in improving resource utilization and production efficiency, reducing production costs, and promoting energy conservation and emission reduction.
[1] | 周源, 陈江安. 铅锌矿选矿技术[M]. 北京: 化学工业出版社, 2012: 1–4. ZHOU Y, CHEN J A. Mineral processing technology for lead−zinc mines[M]. Beijing: Chemical Industry Press, 2012: 1–4. |
[2] | 孙传尧, 宋振国, 朱阳戈, 等. 中国铜铝铅锌矿产资源开发利用现状及安全供应战略研究[J]. 中国工程科学, 2019, 21(1): 133−139. SUN C Y, SONG Z G, ZHU Y G, et al. Exploitation and utilization status and safe supply strategy of copper, aluminum, lead, and zinc resources in china[J]. Engineering Science, 2019, 21(1): 133−139. |
[3] | 唐攀科, 王春艳, 梅友松, 等. 中国铅锌矿产资源成矿特征与资源潜力评价[J]. 地学前缘, 2018, 25(3): 31−49. TANG P K, WANG C Y, MEI Y S, et al. Study on metallogenic characteristics and potential assessment of lead−zinc mineral resources in China[J]. Earth Science Frontiers, 2018, 25(3): 31−49. |
[4] | 《中国矿床》编委会. 中国矿床[M]. 北京: 地质出版社, 2012: 1–2. Editorial board of china mineral deposits. China mineral deposits[M]. Beijing: Geological Publishing House, 2012: 1–2. |
[5] | 胡熙庚. 有色金属硫化矿选矿[M]. 北京: 冶金工业出版社, 1987: 184–206. HU X G. Mineral processing of non−ferrous metal sulfide ores[M]. Beijing: Metallurgical Industry Press, 1987: 184–206. |
[6] | CHEN J H, CHEN Y, LONG X H, et al. DFT study of coadsorption of water and oxygen on galena (PbS) surface: An insight into the oxidation mechanism of galena[J]. Applied Surface Science, 2017, 420(oct.31): 714−719. |
[7] | 顾帼华, 胡岳华, 邱冠周, 等. 方铅矿高碱浮选流程的电化学[J]. 矿冶工程, 2002, 22(1): 52−55. GU G H, HU Y H, QIU G Z, et al. Electrochemistry of galena in hight alkaline flotation[J]. Mining and Metallurgical Engineering, 2002, 22(1): 52−55. |
[8] | 程琍琍, 孙体昌. 高碱条件下的闪锌矿表面电化学反应机理及其浮选意义[J]. 中国矿业, 2011, 20(11): 94−97. CHENG L L, SUN T C. Mechanism of electrochemical reaction on surface of sphalerite in high alkaline and its flotation significance[J]. China Mining Magazine, 2011, 20(11): 94−97. |
[9] | CHEN J H, CHEN Y, LI Y Q. Quantum−mechanical study of effect of lattice defects on surface properties and copper activation of sphalerite surface[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(6): 1121−1130. doi: 10.1016/S1003-6326(09)60266-1 |
[10] | FARHAD M, MOHAMMAD R T M, MEHDI M. Effect of design and operational parameters on particle morphology in ball mills[J]. International Journal of Mineral Processing, 2017, 165: 41−49. doi: 10.1016/j.minpro.2017.06.001 |
[11] | 黄子杰, 孙伟, 高志勇. 磨矿对矿物表面性质和浮选行为的影响[J]. 中国有色金属学报, 2019, 29(11): 2671−2680. HUANG Z J, SUN W, GAO Z Y. Effects of grinding on mineral surface properties and flotation behaviors[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(11): 2671−2680. |
[12] | 顾帼华, 钟素姣. 方铅矿磨矿体系表面电化学性质及其对浮选的影响[J]. 中南大学学报(自然科学版), 2008, 39(1): 54−58. GU G H, ZHONG S J. Electrochemical properties on surface of galena in grinding system and its influence on flotation[J]. Journal of Central South University(Science and Technology), 2008, 39(1): 54−58. |
[13] | RABIEH A, ALBIJANIC B, EKSTEEN J J. A review of the effects of grinding media and chemical conditions on the flotation of pyrite in refractory gold operations[J]. Minerals Engineering, 2016, 94: 21−28. doi: 10.1016/j.mineng.2016.04.012 |
[14] | 聂梦宇, 韩跃新, 李艳军. 磨矿介质对闪锌矿浮选行为的影响研究[J]. 金属矿山, 2019(2): 163−167. NIE M Y, HAN Y X, LI Y J. Effects of grinding media on the flotation behaviors of sphalerite[J]. Metal Mine, 2019(2): 163−167. |
[15] | 敖顺福, 赵华科, 谢立志, 等. 毛坪铅锌矿选矿技术进展评述[J]. 矿业研究与开发, 2017, 37(4): 66−71. AO S F, ZHAO H K, XIE L Z, et al. Review on the advances of mineral processing technologies in maoping lead−zinc mine[J]. Mining Research and Development, 2017, 37(4): 66−71. |
[16] | 王国强, 朱阳戈, 杜立斌, 等. 某铅锌矿磨矿分级系统降比提效试验研究[J]. 有色金属(选矿部分), 2023(2): 90−96. WANG G Q, ZHU Y G, DU L B, et al. Experimental study on reducing ratio and improving efficiency of a grinding−classification system for a lead zinc mine[J]. Nonferrous metals (Mineral processing section), 2023(2): 90−96. |
[17] | 邱廷省, 宋宜富, 赵冠飞, 等. 我国伴生硫铁矿浮选技术现状及进展[J]. 矿山机械, 2021, 42(11): 5−10. QIU T S, SONG Y F, ZHAO G F, et al. Current situation and progress on flotation technology of associated pyrite in China[J]. Mining & Processing Equipment, 2021, 42(11): 5−10. |
[18] | 杨波. 闪锌矿与黄铁矿的交互作用及其对锌硫浮选分离的影响机理[D]. 昆明: 昆明理工大学, 2017. YANG B. Interaction between sphalerite and pyrite and its influence mechanism on zinc sulfur flotation separation[D]. Kunming: Kunming University of Science and Technology, 2017. |
[19] | 孙若凡, 刘丹, 杜钰, 等. 黄铜矿、方铅矿分离研究现状及进展[J]. 矿产综合利用, 2021(4): 80−86. doi: 10.3969/j.issn.1000-6532.2021.04.012 SUN R F, LIU D, DU Y, et al. Research status and development of separation of chalcopyrite and galena[J]. Multipurpose Utilization of Mineral Resources, 2021(4): 80−86. doi: 10.3969/j.issn.1000-6532.2021.04.012 |
[20] | 朴正杰, 魏德洲, 吕宪俊, 等. 铜铅硫化矿浮选分离抑制剂研究进展[J]. 矿产综合利用, 2018(4): 13−16. PIAO Z J, WEI D Z, LV X J, et al. Advanced research on depressants used for flotation separation of Cu−Pb sulfide minerals[J]. Multipurpose Utilization of Mineral Resources, 2018(4): 13−16. |
[21] | 高跃升, 高志勇, 孙伟. 金属离子对矿物浮选行为的影响及机理研究进展[J]. 中国有色金属学报, 2017, 27(4): 859−868. GAO Y S, GAO Z Y, SUN W. Research progress of influence of metal ions on mineral flotation behavior and underlying mechanism[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(4): 859−868. |
[22] | 李明阳, 胡义明, 皇甫明柱, 等. 金属离子对硅酸盐矿物浮选行为影响的研究进展[J]. 矿产保护与利用, 2018(3): 61−66. LI M Y, HU Y M, HUANGFU M Z, et al. Research on the effects of metal ions on silicates flotation[J]. Conservation and Utilization of Mineral Resources, 2018(3): 61−66. |
[23] | 曾勇, 刘建, 王瑜, 等. 典型金属离子对闪锌矿浮选行为的影响及作用机制的研究进展[J]. 矿产保护与利用, 2019, 39(2): 109−117. ZENG Y, LIU J, WANG Y, et al. Research progress on the interaction mechanism of typical metal ions with sphalerite and its effect on flotation[J]. Conservation and Utilization of Mineral Resources, 2019, 39(2): 109−117. |
[24] | 黄福根. 方铅矿浮选时闪锌矿的铅活化[J]. 国外选矿快报, 1997(16): 7−12. HUANG F G. Lead activation of sphalerite in galena flotation[J]. Express Information of Mineral Processing Abroad, 1997(16): 7−12. |
[25] | 董敬申, 刘全军, 盛洁, 等. 矿物浮选分离硫化铜、硫化锌的研究进展[J]. 有色金属工程, 2021, 11(8): 68−74. DONG J S, LIU Q J, SHENG J, et al. Research progress of mineral flotation separation of copper sulfide and zinc sulfide[J]. Nonferrous Metals Engineering, 2021, 11(8): 68−74. |
[26] | 邓久帅. 黄铜矿流体包裹体组分释放及其与弛豫表面的相互作用[D]. 昆明: 昆明理工大学, 2013. DENG J S. The release of chalcopyrite fluid inclusion components and their interaction with the relaxation surface[D]. Kunming: Kunming University of Science and Technology, 2013. |
[27] | 赵清平, 蓝卓越, 童雄. 铜离子对闪锌矿、黄铁矿浮选的选择性活化机理研究[J]. 矿产综合利用, 2021(3): 27−34. ZHAO Q P, LAN Z Y, TONG X. Study on the selective activation mechanism of copper ion on sphalerite and pyrite flotation[J]. Multipurpose Utilization of Mineral Resources, 2021(3): 27−34. |
[28] | IKUMAPAYI F, MAKITALO M, JOHANSSON B, et al. Recycling of process water in sulphide flotation: effect of calcium and sulphate ions on flotation of galena[J]. Minerals Engineering, 2012, 39(12): 77−88. |
[29] | 欧乐明, 黄思捷, 朱阳戈. 硫化矿浮选体系中金属离子对石英浮选行为的影响[J]. 中南大学学报(自然科学版), 2012, 43(2): 407−411. OU L M, HUANG S J, ZHU Y G. Influence of metal ions on floatability of quartz in flotation of sulfide ores[J]. Journal of Central South University(Science and Technology), 2012, 43(2): 407−411. |
[30] | CHEN Y F, ZHANG G F, WANG M T, et al. Utilization of sodium carbonate to eliminate the adverse effect of Ca2+ on smithsonite sulphidisation flotation[J]. Minerals Engineering, 2019, 132: 121−125. doi: 10.1016/j.mineng.2018.12.003 |
[31] | 马忠臣, 孟宪瑜, 吕辉. 矿泥对某氧化铅锌矿石浮选的影响及采取的技术措施[J]. 有色矿冶, 1999, 15(6): 14−17. MA Z C, MENG X Y, LV H. The effect of slime on the flotation of a certain oxidized lead zinc ore and the technical measures taken[J]. Nonferrous mining and metallurgy, 1999, 15(6): 14−17. |
[32] | 朱从杰. 矿泥对氧化锌矿物浮选行为的影响[J]. 矿产综合利用, 2005(1): 7−11. ZHU C J. Study on the effect of slimes on flotation of zinc oxide mineral[J]. Multipurpose Utilization of Mineral Resources, 2005(1): 7−11. |
[33] | 李明晓, 刘殿文, 张文彬. 矿泥对某氧化锌矿石浮选指标的影响[J]. 昆明理工大学学报:理工版, 2010, 35(5): 7−9. LI M X, LIU D W, ZHANG W B. Effect of slime on oxided zinc ore flotation[J]. Journal of Kunming University of Science and Technology(Science and Technology), 2010, 35(5): 7−9. |
[34] | 赵一帆, 来庆腾, 廖寅飞, 等. 硫化—胺盐浮选体系中矿泥对泡沫稳定性的影响[J]. 矿产保护与利用, 2017(3): 52−57. ZHAO Y F, LAI Q T, LIAO Y F, et al. Effect of slime on foam stability in ammonium sulfide flotation system[J]. Conservation and Utilization of Mineral Resources, 2017(3): 52−57. |
[35] | 敖顺福, 王春光. 澜沧老厂银铅锌多金属矿选矿工艺优化与生产实践[J]. 矿冶工程, 2016, 36(6): 57−60. AO S F, WANG C G. Optimization and industrial practice for beneficiation flowsheet of Ag−Pb−Zn polymetallic ore from Laochang mine in Lancang[J]. Mining and Metallurgical Engineering, 2016, 36(6): 57−60. |
[36] | 杨应林, 魏永玺, 石旭. 半自磨工艺在锡铁山技改选厂选型探讨[J]. 甘肃冶金, 2019, 41(4): 11−15. YANG Y L, WEI Y X, SHI X. Discussion on selection of self−autogenous grinding process in Xitieshan technical transformation plant[J]. Gansu Metallurgy, 2019, 41(4): 11−15. |
[37] | ALEX J, WALTER V, GLENN C. Design and implementation of an AVC grinding circuit at BHP billiton Canmington[C]// Vancouver Canada, The Committee of International Autogenous And Semiautogenous Grinding Technology, 2006, II–290. |
[38] | 王潇, 文书明, 韩广, 等. 硫化铅锌矿石浮选分离技术研究进展[J]. 矿产保护与利用, 2021, 41(5): 168−178. WANG X, WEN S M, HAN G, et al. The research development on the flotation technology and reagents of lead−zinc sulfide ore[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 168−178. |
[39] | 邱廷省, 何元卿, 余文, 等. 硫化铅锌矿浮选分离技术的研究现状及进展[J]. 金属矿山, 2016(3): 1−9. QIU T S, HE Y Q, YU W, et al. Research status and development of the lead−zinc sulfide ore flotation separation[J]. Metal Mine, 2016(3): 1−9. |
[40] | 陈薇. 硫化铅锌矿选矿工程设计特征分析[J]. 现代矿业, 2021, 37(3): 114−117. doi: 10.3969/j.issn.1674-6082.2021.03.031 CHEN W. Analysis on design characteristics of beneficiation engineering of sulfide lead−zinc ore[J]. Modern Mining, 2021, 37(3): 114−117. doi: 10.3969/j.issn.1674-6082.2021.03.031 |
[41] | 敖顺福. 碳酸盐岩型(MVT)铅锌矿选矿技术进展[J]. 矿产保护与利用, 2020, 40(5): 170−178. AO S F. Advances in beneficiation technology of carbonate−hosted(MVT) lead–zinc ore[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 170−178. |
[42] | 敖顺福, 王春光, 胡红喜, 等. 某含银低品位铅锌矿石选矿试验研究[J]. 有色金属:选矿部分, 2019(4): 32−39. AO S F, WANG C G, HU H X, et al. Processing experimental study on a low−grade lead−zinc ore containing silver[J]. Nonferrous metals(Mineral processing section), 2019(4): 32−39. |
[43] | 毛志丹, 谢克强, 孔德全, 等. 云南某复杂硫、氧混合铅锌矿浮选实验研究[J]. 矿冶工程, 2021, 41(6): 34−37. MAO Z D, XIE K Q, KONG D Q, et al. Flotation of mixed sulfide−oxide lead and zinc ore from Yunnan[J]. Mining and Metallurgical Engineering, 2021, 41(6): 34−37. |
[44] | 阚赛琼, 宋涛, 梁溢强, 等. 云南某高硫高铁铅锌矿浮选分离试验研究[J]. 有色金属:选矿部分, 2020(3): 41−46. KAN S Q, SONG T, LIANG Y Q, et al. Research on flotation separation of high sulfur and high iron Pb−Zn ore in Yunnan province[J]. Nonferrous metals(Mineral processing section), 2020(3): 41−46. |
[45] | 赵志强, 缪建成, 贺政, 等. 提高栖霞山深部银铅锌矿石选别指标新工艺研究及应用[J]. 有色金属:选矿部分, 2019(5): 63−70. ZHAO Z Q, MIAO J C, HE Z, et al. The research and application of new technology to improve the separation index of silver bearing lead−zinc ore in Qixia mountain[J]. Nonferrous metals (Mineral processing section), 2019(5): 63−70. |
[46] | 罗仙平, 程琍琍, 胡敏, 等. 安徽新桥铅锌矿石电位调控浮选工艺研究[J]. 金属矿山, 2008(2): 61−65. LUO X P, CHENG L L, HU M, et al. Investigation on potential controlled flotation process for Pb−Zn ore from Anhui Xinqiao mine[J]. Metal Mine, 2008(2): 61−65. |
[47] | 王金庆, 严群, 曹志明, 等. 锡铁山铅锌矿选矿工艺沿革评述[J]. 金属矿山, 2017(2): 76−80. doi: 10.3969/j.issn.1001-1250.2017.02.015 WANG J Q, YAN Q, CAO Z M, et al. Evaluation of history of mineral processing process for Xitieshan lead−zinc ore[J]. Metal Mine, 2017(2): 76−80. doi: 10.3969/j.issn.1001-1250.2017.02.015 |
[48] | 刘运财, 邬顺科, 张康生. 凡口铅锌矿近十年选矿技术进展[J]. 矿冶工程, 2007, 27(4): 39−41. LIU Y C, WU S K, ZHANG K S. Development of mineral processing technology in Fankou lead−zinc mine in the last decade[J]. Mining and Metallurgical Engineering, 2007, 27(4): 39−41. |
[49] | 孙肇淑, 伍敬峰, 谢用均. 凡口铅锌矿选矿厂生产技术改造[J]. 有色金属, 1998(S1): 35−40. SUN Z S, WU J F, XIE Y J. The production technique transformation of fankou lead zinc mine mineral processine plant[J]. Nonferrous metals, 1998(S1): 35−40. |
[50] | 黄超军, 郭腾博, 李坤, 等. 氧化铅锌矿浮选法研究进展[J]. 金属矿山, 2019(9): 8−14. HUANG C J, GUO T B, LI K, et al. Progress on oxidized lead−zinc ore flotation methods[J]. Metal Mine, 2019(9): 8−14. |
[51] | 卜显忠, 陈瑶. 我国氧化铅锌矿石选矿技术研究进展[J]. 金属矿山, 2019(7): 118−123. BU X Z, CHEN Y. Research progress of oxidized lead−zinc ore processing in China[J]. Metal Mine, 2019(7): 118−123. |
[52] | 兰志强, 蓝卓越, 张琦福. 氧化铅锌矿利用工艺技术研究进展[J]. 矿产综合利用, 2015(5): 8−12. LAN Z Q, LAN Z Y, ZHANG Q F. Progress of technology for the utilization of the lead−zinc oxide ore[J]. Multipurpose Utilization of Mineral Resources, 2015(5): 8−12. |
[53] | 胡岳华, 王淀佐. 氧化铅锌矿浮选的理论与实践—国外氧化铅锌矿浮选评述[J]. 有色矿冶, 1986(2): 14−22. HU Y H, WANG D Z. Theory and practice of flotation of lead and zinc oxide ores − a review of flotation of lead and zinc oxide ores abroad[J]. Non ferrous mining and metallurgy, 1986(2): 14−22. |
[54] | 戴新宇, 王昌良, 饶系英. 某铅锌矿选矿工艺试验研究[J]. 有色金属:选矿部分, 2006(3): 19−22. DAI X Y, WANG C L, RAO Z Y. Research on mineral processing technology for aceration lead−zinc ore[J]. Nonferrous metals(Mineral processing section), 2006(3): 19−22. |
[55] | 乔吉波, 杨玉珠. 宁南难选氧化硫化混合铅锌矿选矿工艺研究[J]. 矿产综合利用, 2013(1): 19−22. QIAO J B, YANG Y Z. Research on beneficiation process for a refractory oxidation−sulfidation lead−zinc bulk ore in Ningnan[J]. Multipurpose Utilization of Mineral Resources, 2013(1): 19−22. |
[56] | 邓攀. 某氧硫混合铅锌矿选矿试验研究[J]. 现代矿业, 2022, 38(11): 120−123. doi: 10.3969/j.issn.1674-6082.2022.11.027 DENG P. Experimental study on beneficiation of an oxysulfide mixed lead−zinc ore[J]. Modern Mining, 2022, 38(11): 120−123. doi: 10.3969/j.issn.1674-6082.2022.11.027 |
[57] | 刘兵, 肖骏, 陈代雄, 等. 某高泥型硫氧混合铅锌矿选矿技术研究及工业实践[J]. 矿冶, 2017(1): 32−37. LIU B, XIAO J, CHEN D X, et al. Benefication technology study and industrial practice of a high mud sulfur oxygen Pb−Zn ore[J]. Mining and Metallurgy, 2017(1): 32−37. |
[58] | 吕超, 梁溢强, 赵轩, 等. 西南地区某铅锌矿重介质−浮选联合工艺分选试验研究[J]. 矿业研究与开发, 2019, 39(3): 33−37. LV C, LIANG Y Q, ZHAO X, et al. Experimental study on separation of heavy medium−flotation combined process for a lead−zinc mine in southwest China[J]. Mining Research and Development, 2019, 39(3): 33−37. |
[59] | 汪先道, 马原琳, 阚赛琼, 等. 陕西某氧化锌矿浮选−重选联合工艺研究[J]. 云南冶金, 2022, 51(6): 62−66. WANG X D, MA Y L, KAN S Q, et al. Technical study on flotation−gravity separation joint process of one zinc oxide ore in Shannxi[J]. Yunnan Metallurgy, 2022, 51(6): 62−66. |
[60] | 曾懋华, 颜美凤, 奚长生, 等. 从凡口铅锌矿尾矿中回收铅锌[J]. 金属矿山, 2007(9): 123−126. ZENG M H, YAN M F, XI C S, et al. Recovery of lead−zinc from tailings of Fankou lead−zinc mine[J]. Metal Mine, 2007(9): 123−126. |
[61] | 程倩, 王明, 万宏民, 等. 某低品位铅锌矿选矿工艺研究[J]. 矿产综合利用, 2021(1): 65−71. doi: 10.3969/j.issn.1000-6532.2021.01.010 CHENG Q, WANG M, WAN H M, et al. Study on mineral processing technology for a low−grade lead−zinc ore[J]. Multipurpose Utilization of Mineral Resources, 2021(1): 65−71. doi: 10.3969/j.issn.1000-6532.2021.01.010 |
[62] | 罗仙平, 杜显彦, 赵云翔, 等. 内蒙古某低品位难选铅锌矿石选矿工艺研究[J]. 金属矿山, 2013(10): 58−62. LUO X P, DU X Y, ZHAO Y X, et al. Experimental study on beneficiation for a refractory low−grade lead−zinc ore of Inner Mongolia[J]. Metal Mine, 2013(10): 58−62. |
[63] | 童雄, 周庆华, 何剑, 等. 铁闪锌矿的选矿研究概况[J]. 金属矿山, 2006(6): 8−12. TONG X, ZHOU Q H, HE J, et al. Research on mineral processing of marmatite ore[J]. Metal Mine, 2006(6): 8−12. |
[64] | 黄安平, 罗远波. 智能预选抛废在铅锌金银多金属矿中的应用及生产实践[J]. 湖南有色金属, 2022, 38(4): 153−156. HUANG A P, LUO Y B. Application and production practice of intelligent preconcentration discarding in lead zinc gold silver polymetallic ore[J]. Hunan Nonferrous Metals, 2022, 38(4): 153−156. |
[65] | 魏永玺, 张鲁, 陈帆帆. 基于X射线智能分选的预先抛废在某低品位铅锌矿中的应用[J]. 甘肃冶金, 2022, 44(3): 4−9. doi: 10.3969/j.issn.1672-4461.2022.03.003 WEI Y X, ZHANG L, CHEN F F. Application of pre−discarding based on X−ray intelligent separation in a low grade lead−zinc mine[J]. Gansu Metallurgy, 2022, 44(3): 4−9. doi: 10.3969/j.issn.1672-4461.2022.03.003 |
[66] | 李旭. 含锌铅精矿生物选择性浸锌及机理研究[D]. 北京: 北京有色金属研究总院, 2020. LI X. Study on the bioselective zinc leaching and mechanism of zinc containing lead concentrates[D]. Beijing: Beijing General Research Institute of Non ferrous Metals, 2020. |
[67] | 李珊珊, 胡慧萍, 张维, 等. 云南兰坪低品位氧化锌矿氨浸渣可浮性试验研究[J]. 有色金属(选矿部分), 2012(2): 15−20. LI S S, HU H P, ZHANG W, et al. Research on the flotation process of leaching slag from low grade zinc oxide ore in lanping of Yunnan[J]. Nonferrous metals(Mineral processing section), 2012(2): 15−20. |
[68] | 徐瑾, 章晓林, 王其宏. 云南某低品位氧化铅锌矿选冶联合新工艺研究[J]. 矿冶, 2018, 27(5): 5−10. XU J, ZHANG X L, WANG Q H. New benefciation−metallurgy combined process study on a low grade lead zinc oxide ore in Yunnan province[J]. Mining and Metallurgy, 2018, 27(5): 5−10. |
[69] | 程建国. 低品位微细粒氧化铅锌矿选冶工艺研究[J]. 矿冶工程, 2013, 33(5): 106−110. doi: 10.3969/j.issn.0253-6099.2013.05.027 CHENG J G. Beneficiation−metallurgy technology for low−grade fine−grained lead−zinc oxide ore[J]. Mining and Metallurgical Engineering, 2013, 33(5): 106−110. doi: 10.3969/j.issn.0253-6099.2013.05.027 |
[70] | 窦源东, 张建华, 王涛. 河北某低品位难选铅锌矿选矿工艺优化研究[J]. 中国矿业, 2023, 32(1): 134−140. DOU Y D, ZHANG J H, WANG T. Study on the optimization of beneficiation technology of a low grade refractory lead−zinc ore in Hebei province[J]. China Mining Magazine, 2023, 32(1): 134−140. |
[71] | 朱贤文, 王阳, 王朝, 等. 四川某硫化铅锌矿石铅浮选工艺优化研究[J]. 金属矿山, 2022(5): 123−128. ZHU X W, WANG Y, WANG Z, et al. Research on optimization of lead flotation proceesing of a lead−zinc sulfur ores in Sichuan[J]. Metal Mine, 2022(5): 123−128. |
[72] | 胡陈强, 郎召有, 高连启, 等. 云南某高硫铅锌矿浮选分离工艺研究[J]. 矿产综合利用, 2022(5): 158−163. HU C Q, LANG Z Y, GAO L Q, et al. Study on flotation separation of high sulfur lead−zinc ore from Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2022(5): 158−163. |
[73] | 丁声强. 铅锌硫化矿低碱分离技术研究[D]. 江西理工大学, 2013. DING S Q. Research on low alkaline separation technology for lead−zinc sulfide ores[D]. Jiangxi University of Technology, 2013. |
[74] | JIA Y, ZHANG Y, HUANG Y G, et al. Synthesis of trimethylacetyl thiobenzamide and its flotation separation performance of galena from sphalerite[J]. Applied Surface Science, 2021, 569. |
[75] | 苏振华. 广西盘龙铅锌矿低碱浮选试验研究[J]. 矿冶, 2021, 30(2): 77−82. doi: 10.3969/j.issn.1005-7854.2021.02.012 SU Z H. Experimental study on the low−alkali flotation of Guangxi Panlong lead−zinc ore[J]. Mining and Metallurgy, 2021, 30(2): 77−82. doi: 10.3969/j.issn.1005-7854.2021.02.012 |
[76] | 李博琦, 谢贤, 宋强, 等. 基于正交试验某高硫铅锌矿选矿工艺优化[J]. 有色金属工程, 2021, 11(6): 85−94. doi: 10.3969/j.issn.2095-1744.2021.06.013 LI B Q, XIE X, SONG Q, et al. Optimization of beneficiation process of a high−sulfur lead−zinc ore based on orthogonal test[J]. Nonferrous Metals Engineering, 2021, 11(6): 85−94. doi: 10.3969/j.issn.2095-1744.2021.06.013 |
[77] | 曹飞, 曹进成, 吕良, 等. 内蒙古某富银铅锌硫化矿浮选分离试验研究[J]. 矿冶工程, 2023, 43(3): 1−5. doi: 10.3969/j.issn.0253-6099.2023.03.001 CAO F, CAO J C, LV L, et al. Experimental study on flotation of a Ag−rich Pb−Zn sulfide ore from Inner Mongolia[J]. Mining and Metallurgical Engineering, 2023, 43(3): 1−5. doi: 10.3969/j.issn.0253-6099.2023.03.001 |
[78] | 廖乾. 西藏某含银氧化铅矿石选矿工艺研究[J]. 金属矿山, 2018(2): 85−88. LIAO Q. Beneficiation technology research of a silver bearing lead oxidized ore in Tibet[J]. Metal Mine, 2018(2): 85−88. |
[79] | 王祖旭. 用新型螯合捕收剂分选云南某氧化铅锌矿石[J]. 金属矿山, 2014(7): 89−93. WANG Z X. Separation of a lead−zinc oxide ore in Yunnan with a new chelating collector[J]. Metal Mine, 2014(7): 89−93. |
[80] | 谭欣, 李长根. 螯合捕收剂CF对氧化铅锌矿捕收性能初探[J]. 有色金属:选矿部分, 2002(4): 31−36. TAN X, LI C G. Study of flotation of the lead and zinc oxide ores by using chelate CF as collector[J]. Non ferrous Metals: Mineral Processing, 2002(4): 31−36. |
[81] | 王福良. 铜铅锌铁主要硫化氧化矿物浮选的基础理论研究[D]. 沈阳: 东北大学, 2008. WANG F L. Basic theoretical study on flotation of copper, lead, zinc and iron main sulfide oxide minerals[D]. Shenyang: Northeast University, 2008. |
[82] | 靳晨曦, 马子龙, 曹亦俊, 等. 极低品位泥质难选氧化锌矿浮选试验研究[J]. 矿产综合利用, 2017(1): 70−75. JIN C X, MA Z L, CAO Y J, et al. Flotation atudy on aeparating the extremely low−grade and argillaceous refractory oxide zinc[J]. Multipurpose Utilization of Mineral Resources, 2017(1): 70−75. |
[83] | 蔡锦鹏. 菱锌矿加温强化硫化机理研究[D]. 昆明理工大学, 2019. CAI J P. Study on the mechanism of smithsonite heating strengthening sulfuration[D]. Kunming University of Science and Technology, 2019. |
[84] | 李国栋. 抑铅浮锌分离铅锌混合精矿的工艺及机理研究[D]. 昆明: 昆明理工大学, 2014. LI G D. Research on the process and mechanism of separating lead zinc mixed concentrate by suppressing lead and floating zinc[D]. Kunming: Kunming University of Science and Technology, 2014. |
[85] | PRESTIDGE C A, SKINNER W M, RALSTON J, et al. Copper(II) activationand cyanide deactivation of zinc sulphide under mildly alkaline conditions[J]. Appl. Surf. Sci., 1997, 108(3): 333−344. doi: 10.1016/S0169-4332(96)00681-2 |
[86] | 杨备, 刘卫. 提高某铅锌伴生银矿选矿指标试验研究[J]. 矿产保护与利用, 2012(6): 25−27. YANG B, LIU W. Experimental study on improvement of dressing indexes for a lead−zinc−associated silver ore[J]. Conservation and Utilization of Mineral Resources, 2012(6): 25−27. |
[87] | 黄雪约, 张其东, 尚鹤, 等. 内蒙古某复杂铅锌多金属矿浮选试验研究[J]. 矿冶, 2022, 31(4): 35−4263. doi: 10.3969/j.issn.1005-7854.2022.04.006 HUANG X Y, ZHANG Q D, SHANG H, et al. Floatation experimental study of a complex Pb−Zn polymetallic sulfide ore in Inner Mongolia[J]. Mining and Metallurgy, 2022, 31(4): 35−4263. doi: 10.3969/j.issn.1005-7854.2022.04.006 |
[88] | 冯其明, 周荣. 经铜离子活化后的某铅锌硫混合精矿中闪锌矿的浮选分离研究[J]. 矿冶工程, 2011, 31(5): 32−34. doi: 10.3969/j.issn.0253-6099.2011.05.008 FENG Q M, ZHOU R. Flotation separation of sphalerite from Pb−Zn−S bulk concentrate activated by cupric sulfate[J]. Mining and Metallurgical Engineering, 2011, 31(5): 32−34. doi: 10.3969/j.issn.0253-6099.2011.05.008 |
[89] | 李健民, 宋凯伟, 章晓林, 等. 组合抑制剂柠檬酸钠和焦磷酸钠在某铅锌矿分离浮选中的作用[J]. 过程工程学报, 2017, 17(3): 500−505. LI J M, SONG K W, ZHANG X L, et al. Effect of combined reagents of sodium citrate and sodium pyrophosphate on flotation separation of a polymetallic lead−zinc ore[J]. The Chinese Journal of Process Engineering, 2017, 17(3): 500−505. |
[90] | 刘润清, 孙伟, 胡岳华, 等. 巯基类小分子有机抑制剂对复杂硫化矿物浮选行为的抑制机理[J]. 中国有色金属学报, 2006(4): 746−751. LIU R Q, SUN W, HU Y H, et al. Depression mechanism of small molecular mercapto organic depressants on flotation behavior of complex sulfides[J]. The Chinese Journal of Nonferrous Metals, 2006(4): 746−751. |
[91] | 王阳, 卜显忠, 翁存建. 新型有机抑制剂对铅锌分离的影响及其作用机理[J]. 矿业研究与开发, 2017, 37(5): 94−97. WANG Y, BU X Z, WENG C J. The influence of new organic inhibitor on the lead−zinc separation and its action mechanism[J]. Mining Research and Development, 2017, 37(5): 94−97. |
[92] | 谢贤, 童雄, 侯凯, 等. X−43活化铁闪锌矿的优化试验[J]. 武汉工程大学学报, 2015(5): 6−10. doi: 10.3969/j.issn.1674-2869.2015.05.002 XIE X, TONG X, HOU K, et al. Optimal test of marmatite with new activator X−43[J]. Journal of Wuhan Institute of Technology, 2015(5): 6−10. doi: 10.3969/j.issn.1674-2869.2015.05.002 |
[93] | 谢贤, 童雄, 崔毅琪, 等. 几种活化剂对铁闪锌矿的活化性能[J]. 金属矿山, 2010(12): 50−53. XIE X, TONG X, CUI Y Q, et al. Study on activation performance of several kinds of activators on marmatite[J]. Metal Mine, 2010(12): 50−53. |
[94] | 沈卫卫, 赵业雄, 李峰. 乌拉根铅锌矿选矿工艺优化和生产实践[J]. 中国矿业, 2016, 25(3): 112−116. SHEN W W, ZHAO Y X, LI F. Technological optimization and practice of mineral processing technology in Wulagen lead−zinc mine[J]. China Mining Magazine, 2016, 25(3): 112−116. |
[95] | 佚名. 山特维克CH865圆锥破助力乌拉特后旗紫金矿业增产纪实[J]. 矿业装备, 2020(5): 11−13. NO NAME. Record of Shantevik CH865 cone breaking assists the production increase of Zijin Mining in Wulathou Banner[J]. Mining Equipment, 2020(5): 11−13. |
[96] | 莫峰, 陈华萍, 吉灿荣. 高压辊磨机在有色多金属矿的应用[J]. 现代矿业, 2012, 27(6): 107−109. MO F, CHEN H P, JI C R. Application of high pressure roller mill in nonferrous polymetallic mines[J]. Modern Mining, 2012, 27(6): 107−109. |
[97] | 沙玄阳, 李世纯, 魏盛甲, 等. 锡铁山铅锌矿磨矿−分级系统改造实践[J]. 现代矿业, 2018, 34(10): 126−127. doi: 10.3969/j.issn.1674-6082.2018.10.036 SHA X Y, LI S C, WEI S J, et al. Practice of grinding−classification system in Xitieshan lead−zinc mine[J]. Modern Mining, 2018, 34(10): 126−127. doi: 10.3969/j.issn.1674-6082.2018.10.036 |
[98] | 和智聪, 芮鹤松, 李玉华, 等. 3000 t/d硫化矿选厂设计与生产实践[J]. 中国矿山工程, 2017, 46(6): 21−25. doi: 10.3969/j.issn.1672-609X.2017.06.005 HE Z C, RUI H S, LI Y H, et al. Design and production practice of 3000 t/d sulfide ore dressing plant[J]. China Mine Engineering, 2017, 46(6): 21−25. doi: 10.3969/j.issn.1672-609X.2017.06.005 |
[99] | 任英东, 肖庆飞, 周强, 等. 某铅锌矿立磨机与球磨机磨矿效果对比试验研究[J]. 矿产保护与利用, 2023, 43(1): 73−78. REN Y D, XIAO Q F, ZHOU Q, et al. Comparative experimental study on the grinding effect of certain lead−zinc mine through vertical mill and ball mill[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 73−78. |
[100] | 肖骏, 陈代雄, 杨建文, 等. 凡口铅锌矿铅锌硫混合精矿分离试验研究[J]. 有色金属科学与工程, 2015, 6(2): 104−110. XIAO J, CHEN D X, YANG J W, et al. Separation tests of the lead−zinc−sulfur mixed concentrate in Fankou lead and zinc mine[J]. Nonferrous Metals Science and Engineering, 2015, 6(2): 104−110. |
[101] | 敖顺福, 王正奇, 陈丽昆, 等. 立式螺旋搅拌磨机在某硫精矿再选中的应用[J]. 矿山机械, 2020, 48(7): 45−49. doi: 10.3969/j.issn.1001-3954.2020.07.011 AO S F, WANG Z Q, CHEN L K, et al. Application of vertical screw stirring mill to re−cleaning of a sulfur concentrate[J]. Mining & Processing Equipment, 2020, 48(7): 45−49. doi: 10.3969/j.issn.1001-3954.2020.07.011 |
[102] | 阙成功. 艾砂磨在新疆阿舍勒铜矿的工业应用[J]. 新疆有色金属, 2021, 44(4): 23−26. QUE C G. Industrial application of isa mill in Xinjiang Ashele copper mine[J]. Xinjiang Nonferrous Metals, 2021, 44(4): 23−26. |
[103] | 赖茂河, 吴锋, 韩志彬, 等. GF−24型浮选机在某铅锌矿的改造应用研究[C]. 第八届全国选矿专业学术年会暨矿产资源绿色高效开发利用高峰论坛论文集. 2016: 255–258. LAI M H, WU F, HAN Z B, et al. Research on the transformation and application of GF−24 flotation machine in a lead zinc mine[C]// Proceedings of the 8th National Academic Annual Conference on Mineral Processing and the Summit Forum on Green and Efficient Development and Utilization of Mineral Resources 2016: 255–258. |
[104] | 张智平, 芮凯, 宋福官. 充气机械搅拌浮选机在栖霞山铅锌矿的应用[C]// 2009年全国选矿学术会议论文集. 2009: 339–341. ZHANG Z P, RUI K, SONG F G. The application of aerated mechanical stirring flotation machine in Qixiashan lead zinc mine[C]// Proceedings of the 2009 National Mineral Processing Academic Conference 2009: 339–341. |
[105] | 陈如凤, 缪建成, 赵志强, 等. 南京栖霞山柱机联合浮选铅锌硫的研究与应用[J]. 有色金属(选矿部分), 2018(1): 38−42. CHEN R F, MIAO J C, ZHAO Z Q, et al. Research and application of column machine combined flotation of lead and zinc sulfide in Qixiashan Nanjing[J]. Nonferrous metals(Mineral processing section), 2018(1): 38−42. |
[106] | 张建刚, 吉红, 卿林江, 等. CCF浮选柱在铅锌矿选矿中的应用[J]. 矿产保护与利用, 2015(4): 38−42. doi: 10.13779/j.cnki.issn1001-0076.2015.04.008 ZHANG J G, JI H, QING L J, et al. The application of CCF flotation column in separation of lead−zinc ore[J]. Conservation and Utilization of Mineral Resources, 2015(4): 38−42. doi: 10.13779/j.cnki.issn1001-0076.2015.04.008 |
[107] | 刘炯天, 王永田, 李小兵, 等. 柴山铅锌矿石旋流−静态微泡柱浮选试验研究[J]. 金属矿山, 2008, 380(2): 66−69. doi: 10.3321/j.issn:1001-1250.2008.02.016 LIU J T, WANG Y T, LI X B, et al. Experimental study on beneficiation of Chaishan lead−zinc ore by cyclonic−static microbubble flotation column[J]. Metal Mine, 2008, 380(2): 66−69. doi: 10.3321/j.issn:1001-1250.2008.02.016 |
Crushing+semi automatic grinding+vertical grinding process flow of Cannington lead-zinc silver ore
Principle flow of flotating-magnetic combined separation for a certain lead-zinc mine
Principle flowchart of a zinc oxide ore beneficiation and smelting combined process
Structure diagram of xanthate, aerofloat, sulfur and nitrogen
High pressure roller mill crushing process flow chart