Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 5
Article Contents

AO Shunfu. Research Progress of Lead−zinc Ore Separation Process, Reagents and Equipments[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 146-162. doi: 10.13779/j.cnki.issn1001-0076.2023.05.016
Citation: AO Shunfu. Research Progress of Lead−zinc Ore Separation Process, Reagents and Equipments[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 146-162. doi: 10.13779/j.cnki.issn1001-0076.2023.05.016

Research Progress of Lead−zinc Ore Separation Process, Reagents and Equipments

More Information
  • Lead and zinc are key basic raw materials for modern social and economic development. With the rapid growth of the economy, the demand for lead and zinc increases gradually, and the efficient recycling and utilization of complex lead and zinc mineral resources is becoming increasingly urgent. The effects of the variable floatability of lead-zinc minerals, overgrinding or dissociation difficulty for useful minerals, complex separation and recovery of associated useful components, metal ions, and deterioration of slurry environment by ore mud in lead-zinc beneficiation are reviewed. The research and application progress of the crushing and grinding process, beneficiation process, beneficiation reagents, and beneficiation equipment are summarized. Based on this, it is pointed out that the traditional crushing and ball milling process, consisting of more crushing and less grinding, brings in rod milling, semi-automatic milling, stirring milling, and high-pressure roller milling, forming unique crushing and grinding processes, and has become an important way to simplify the process, save energy, reduce consumption, expand production and increase capacity in lead-zinc beneficiation. Flotation is still the most effective and widely used beneficiation method for lead-zinc ore. Base on the differences in the natural floatability of minerals, a suitable flotation process is the key to efficient separation of minerals. flotation as the main method, combined with gravity separation, magnetic separation, sorting separation, and smelting, and fully utilizing the advantages of combined processes are an important development trend for lead-zinc beneficiation. The research and application of novel reagents and the combination of conventional reagents, especially the collectors with strong collection performance and good selectivity, as well as environmentally friendly, low-cost, and efficient inhibitors and activators, are always been the basic guarantee for clean and efficient recovery of lead-zinc ore. Combining the properties of the ore and the production scale of the beneficiation plant, the suitable uses of semi-automatic mills, high-pressure roller mills, mobile crusher stations, stirring mills, and flotation columns, are of great significance in improving resource utilization and production efficiency, reducing production costs, and promoting energy conservation and emission reduction.

  • 加载中
  • [1] 周源, 陈江安. 铅锌矿选矿技术[M]. 北京: 化学工业出版社, 2012: 1–4.

    Google Scholar

    ZHOU Y, CHEN J A. Mineral processing technology for lead−zinc mines[M]. Beijing: Chemical Industry Press, 2012: 1–4.

    Google Scholar

    [2] 孙传尧, 宋振国, 朱阳戈, 等. 中国铜铝铅锌矿产资源开发利用现状及安全供应战略研究[J]. 中国工程科学, 2019, 21(1): 133−139.

    Google Scholar

    SUN C Y, SONG Z G, ZHU Y G, et al. Exploitation and utilization status and safe supply strategy of copper, aluminum, lead, and zinc resources in china[J]. Engineering Science, 2019, 21(1): 133−139.

    Google Scholar

    [3] 唐攀科, 王春艳, 梅友松, 等. 中国铅锌矿产资源成矿特征与资源潜力评价[J]. 地学前缘, 2018, 25(3): 31−49.

    Google Scholar

    TANG P K, WANG C Y, MEI Y S, et al. Study on metallogenic characteristics and potential assessment of lead−zinc mineral resources in China[J]. Earth Science Frontiers, 2018, 25(3): 31−49.

    Google Scholar

    [4] 《中国矿床》编委会. 中国矿床[M]. 北京: 地质出版社, 2012: 1–2.

    Google Scholar

    Editorial board of china mineral deposits. China mineral deposits[M]. Beijing: Geological Publishing House, 2012: 1–2.

    Google Scholar

    [5] 胡熙庚. 有色金属硫化矿选矿[M]. 北京: 冶金工业出版社, 1987: 184–206.

    Google Scholar

    HU X G. Mineral processing of non−ferrous metal sulfide ores[M]. Beijing: Metallurgical Industry Press, 1987: 184–206.

    Google Scholar

    [6] CHEN J H, CHEN Y, LONG X H, et al. DFT study of coadsorption of water and oxygen on galena (PbS) surface: An insight into the oxidation mechanism of galena[J]. Applied Surface Science, 2017, 420(oct.31): 714−719.

    Google Scholar

    [7] 顾帼华, 胡岳华, 邱冠周, 等. 方铅矿高碱浮选流程的电化学[J]. 矿冶工程, 2002, 22(1): 52−55.

    Google Scholar

    GU G H, HU Y H, QIU G Z, et al. Electrochemistry of galena in hight alkaline flotation[J]. Mining and Metallurgical Engineering, 2002, 22(1): 52−55.

    Google Scholar

    [8] 程琍琍, 孙体昌. 高碱条件下的闪锌矿表面电化学反应机理及其浮选意义[J]. 中国矿业, 2011, 20(11): 94−97.

    Google Scholar

    CHENG L L, SUN T C. Mechanism of electrochemical reaction on surface of sphalerite in high alkaline and its flotation significance[J]. China Mining Magazine, 2011, 20(11): 94−97.

    Google Scholar

    [9] CHEN J H, CHEN Y, LI Y Q. Quantum−mechanical study of effect of lattice defects on surface properties and copper activation of sphalerite surface[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(6): 1121−1130. doi: 10.1016/S1003-6326(09)60266-1

    CrossRef Google Scholar

    [10] FARHAD M, MOHAMMAD R T M, MEHDI M. Effect of design and operational parameters on particle morphology in ball mills[J]. International Journal of Mineral Processing, 2017, 165: 41−49. doi: 10.1016/j.minpro.2017.06.001

    CrossRef Google Scholar

    [11] 黄子杰, 孙伟, 高志勇. 磨矿对矿物表面性质和浮选行为的影响[J]. 中国有色金属学报, 2019, 29(11): 2671−2680.

    Google Scholar

    HUANG Z J, SUN W, GAO Z Y. Effects of grinding on mineral surface properties and flotation behaviors[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(11): 2671−2680.

    Google Scholar

    [12] 顾帼华, 钟素姣. 方铅矿磨矿体系表面电化学性质及其对浮选的影响[J]. 中南大学学报(自然科学版), 2008, 39(1): 54−58.

    Google Scholar

    GU G H, ZHONG S J. Electrochemical properties on surface of galena in grinding system and its influence on flotation[J]. Journal of Central South University(Science and Technology), 2008, 39(1): 54−58.

    Google Scholar

    [13] RABIEH A, ALBIJANIC B, EKSTEEN J J. A review of the effects of grinding media and chemical conditions on the flotation of pyrite in refractory gold operations[J]. Minerals Engineering, 2016, 94: 21−28. doi: 10.1016/j.mineng.2016.04.012

    CrossRef Google Scholar

    [14] 聂梦宇, 韩跃新, 李艳军. 磨矿介质对闪锌矿浮选行为的影响研究[J]. 金属矿山, 2019(2): 163−167.

    Google Scholar

    NIE M Y, HAN Y X, LI Y J. Effects of grinding media on the flotation behaviors of sphalerite[J]. Metal Mine, 2019(2): 163−167.

    Google Scholar

    [15] 敖顺福, 赵华科, 谢立志, 等. 毛坪铅锌矿选矿技术进展评述[J]. 矿业研究与开发, 2017, 37(4): 66−71.

    Google Scholar

    AO S F, ZHAO H K, XIE L Z, et al. Review on the advances of mineral processing technologies in maoping lead−zinc mine[J]. Mining Research and Development, 2017, 37(4): 66−71.

    Google Scholar

    [16] 王国强, 朱阳戈, 杜立斌, 等. 某铅锌矿磨矿分级系统降比提效试验研究[J]. 有色金属(选矿部分), 2023(2): 90−96.

    Google Scholar

    WANG G Q, ZHU Y G, DU L B, et al. Experimental study on reducing ratio and improving efficiency of a grinding−classification system for a lead zinc mine[J]. Nonferrous metals (Mineral processing section), 2023(2): 90−96.

    Google Scholar

    [17] 邱廷省, 宋宜富, 赵冠飞, 等. 我国伴生硫铁矿浮选技术现状及进展[J]. 矿山机械, 2021, 42(11): 5−10.

    Google Scholar

    QIU T S, SONG Y F, ZHAO G F, et al. Current situation and progress on flotation technology of associated pyrite in China[J]. Mining & Processing Equipment, 2021, 42(11): 5−10.

    Google Scholar

    [18] 杨波. 闪锌矿与黄铁矿的交互作用及其对锌硫浮选分离的影响机理[D]. 昆明: 昆明理工大学, 2017.

    Google Scholar

    YANG B. Interaction between sphalerite and pyrite and its influence mechanism on zinc sulfur flotation separation[D]. Kunming: Kunming University of Science and Technology, 2017.

    Google Scholar

    [19] 孙若凡, 刘丹, 杜钰, 等. 黄铜矿、方铅矿分离研究现状及进展[J]. 矿产综合利用, 2021(4): 80−86. doi: 10.3969/j.issn.1000-6532.2021.04.012

    CrossRef Google Scholar

    SUN R F, LIU D, DU Y, et al. Research status and development of separation of chalcopyrite and galena[J]. Multipurpose Utilization of Mineral Resources, 2021(4): 80−86. doi: 10.3969/j.issn.1000-6532.2021.04.012

    CrossRef Google Scholar

    [20] 朴正杰, 魏德洲, 吕宪俊, 等. 铜铅硫化矿浮选分离抑制剂研究进展[J]. 矿产综合利用, 2018(4): 13−16.

    Google Scholar

    PIAO Z J, WEI D Z, LV X J, et al. Advanced research on depressants used for flotation separation of Cu−Pb sulfide minerals[J]. Multipurpose Utilization of Mineral Resources, 2018(4): 13−16.

    Google Scholar

    [21] 高跃升, 高志勇, 孙伟. 金属离子对矿物浮选行为的影响及机理研究进展[J]. 中国有色金属学报, 2017, 27(4): 859−868.

    Google Scholar

    GAO Y S, GAO Z Y, SUN W. Research progress of influence of metal ions on mineral flotation behavior and underlying mechanism[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(4): 859−868.

    Google Scholar

    [22] 李明阳, 胡义明, 皇甫明柱, 等. 金属离子对硅酸盐矿物浮选行为影响的研究进展[J]. 矿产保护与利用, 2018(3): 61−66.

    Google Scholar

    LI M Y, HU Y M, HUANGFU M Z, et al. Research on the effects of metal ions on silicates flotation[J]. Conservation and Utilization of Mineral Resources, 2018(3): 61−66.

    Google Scholar

    [23] 曾勇, 刘建, 王瑜, 等. 典型金属离子对闪锌矿浮选行为的影响及作用机制的研究进展[J]. 矿产保护与利用, 2019, 39(2): 109−117.

    Google Scholar

    ZENG Y, LIU J, WANG Y, et al. Research progress on the interaction mechanism of typical metal ions with sphalerite and its effect on flotation[J]. Conservation and Utilization of Mineral Resources, 2019, 39(2): 109−117.

    Google Scholar

    [24] 黄福根. 方铅矿浮选时闪锌矿的铅活化[J]. 国外选矿快报, 1997(16): 7−12.

    Google Scholar

    HUANG F G. Lead activation of sphalerite in galena flotation[J]. Express Information of Mineral Processing Abroad, 1997(16): 7−12.

    Google Scholar

    [25] 董敬申, 刘全军, 盛洁, 等. 矿物浮选分离硫化铜、硫化锌的研究进展[J]. 有色金属工程, 2021, 11(8): 68−74.

    Google Scholar

    DONG J S, LIU Q J, SHENG J, et al. Research progress of mineral flotation separation of copper sulfide and zinc sulfide[J]. Nonferrous Metals Engineering, 2021, 11(8): 68−74.

    Google Scholar

    [26] 邓久帅. 黄铜矿流体包裹体组分释放及其与弛豫表面的相互作用[D]. 昆明: 昆明理工大学, 2013.

    Google Scholar

    DENG J S. The release of chalcopyrite fluid inclusion components and their interaction with the relaxation surface[D]. Kunming: Kunming University of Science and Technology, 2013.

    Google Scholar

    [27] 赵清平, 蓝卓越, 童雄. 铜离子对闪锌矿、黄铁矿浮选的选择性活化机理研究[J]. 矿产综合利用, 2021(3): 27−34.

    Google Scholar

    ZHAO Q P, LAN Z Y, TONG X. Study on the selective activation mechanism of copper ion on sphalerite and pyrite flotation[J]. Multipurpose Utilization of Mineral Resources, 2021(3): 27−34.

    Google Scholar

    [28] IKUMAPAYI F, MAKITALO M, JOHANSSON B, et al. Recycling of process water in sulphide flotation: effect of calcium and sulphate ions on flotation of galena[J]. Minerals Engineering, 2012, 39(12): 77−88.

    Google Scholar

    [29] 欧乐明, 黄思捷, 朱阳戈. 硫化矿浮选体系中金属离子对石英浮选行为的影响[J]. 中南大学学报(自然科学版), 2012, 43(2): 407−411.

    Google Scholar

    OU L M, HUANG S J, ZHU Y G. Influence of metal ions on floatability of quartz in flotation of sulfide ores[J]. Journal of Central South University(Science and Technology), 2012, 43(2): 407−411.

    Google Scholar

    [30] CHEN Y F, ZHANG G F, WANG M T, et al. Utilization of sodium carbonate to eliminate the adverse effect of Ca2+ on smithsonite sulphidisation flotation[J]. Minerals Engineering, 2019, 132: 121−125. doi: 10.1016/j.mineng.2018.12.003

    CrossRef Google Scholar

    [31] 马忠臣, 孟宪瑜, 吕辉. 矿泥对某氧化铅锌矿石浮选的影响及采取的技术措施[J]. 有色矿冶, 1999, 15(6): 14−17.

    Google Scholar

    MA Z C, MENG X Y, LV H. The effect of slime on the flotation of a certain oxidized lead zinc ore and the technical measures taken[J]. Nonferrous mining and metallurgy, 1999, 15(6): 14−17.

    Google Scholar

    [32] 朱从杰. 矿泥对氧化锌矿物浮选行为的影响[J]. 矿产综合利用, 2005(1): 7−11.

    Google Scholar

    ZHU C J. Study on the effect of slimes on flotation of zinc oxide mineral[J]. Multipurpose Utilization of Mineral Resources, 2005(1): 7−11.

    Google Scholar

    [33] 李明晓, 刘殿文, 张文彬. 矿泥对某氧化锌矿石浮选指标的影响[J]. 昆明理工大学学报:理工版, 2010, 35(5): 7−9.

    Google Scholar

    LI M X, LIU D W, ZHANG W B. Effect of slime on oxided zinc ore flotation[J]. Journal of Kunming University of Science and Technology(Science and Technology), 2010, 35(5): 7−9.

    Google Scholar

    [34] 赵一帆, 来庆腾, 廖寅飞, 等. 硫化—胺盐浮选体系中矿泥对泡沫稳定性的影响[J]. 矿产保护与利用, 2017(3): 52−57.

    Google Scholar

    ZHAO Y F, LAI Q T, LIAO Y F, et al. Effect of slime on foam stability in ammonium sulfide flotation system[J]. Conservation and Utilization of Mineral Resources, 2017(3): 52−57.

    Google Scholar

    [35] 敖顺福, 王春光. 澜沧老厂银铅锌多金属矿选矿工艺优化与生产实践[J]. 矿冶工程, 2016, 36(6): 57−60.

    Google Scholar

    AO S F, WANG C G. Optimization and industrial practice for beneficiation flowsheet of Ag−Pb−Zn polymetallic ore from Laochang mine in Lancang[J]. Mining and Metallurgical Engineering, 2016, 36(6): 57−60.

    Google Scholar

    [36] 杨应林, 魏永玺, 石旭. 半自磨工艺在锡铁山技改选厂选型探讨[J]. 甘肃冶金, 2019, 41(4): 11−15.

    Google Scholar

    YANG Y L, WEI Y X, SHI X. Discussion on selection of self−autogenous grinding process in Xitieshan technical transformation plant[J]. Gansu Metallurgy, 2019, 41(4): 11−15.

    Google Scholar

    [37] ALEX J, WALTER V, GLENN C. Design and implementation of an AVC grinding circuit at BHP billiton Canmington[C]// Vancouver Canada, The Committee of International Autogenous And Semiautogenous Grinding Technology, 2006, II–290.

    Google Scholar

    [38] 王潇, 文书明, 韩广, 等. 硫化铅锌矿石浮选分离技术研究进展[J]. 矿产保护与利用, 2021, 41(5): 168−178.

    Google Scholar

    WANG X, WEN S M, HAN G, et al. The research development on the flotation technology and reagents of lead−zinc sulfide ore[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 168−178.

    Google Scholar

    [39] 邱廷省, 何元卿, 余文, 等. 硫化铅锌矿浮选分离技术的研究现状及进展[J]. 金属矿山, 2016(3): 1−9.

    Google Scholar

    QIU T S, HE Y Q, YU W, et al. Research status and development of the lead−zinc sulfide ore flotation separation[J]. Metal Mine, 2016(3): 1−9.

    Google Scholar

    [40] 陈薇. 硫化铅锌矿选矿工程设计特征分析[J]. 现代矿业, 2021, 37(3): 114−117. doi: 10.3969/j.issn.1674-6082.2021.03.031

    CrossRef Google Scholar

    CHEN W. Analysis on design characteristics of beneficiation engineering of sulfide lead−zinc ore[J]. Modern Mining, 2021, 37(3): 114−117. doi: 10.3969/j.issn.1674-6082.2021.03.031

    CrossRef Google Scholar

    [41] 敖顺福. 碳酸盐岩型(MVT)铅锌矿选矿技术进展[J]. 矿产保护与利用, 2020, 40(5): 170−178.

    Google Scholar

    AO S F. Advances in beneficiation technology of carbonate−hosted(MVT) lead–zinc ore[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 170−178.

    Google Scholar

    [42] 敖顺福, 王春光, 胡红喜, 等. 某含银低品位铅锌矿石选矿试验研究[J]. 有色金属:选矿部分, 2019(4): 32−39.

    Google Scholar

    AO S F, WANG C G, HU H X, et al. Processing experimental study on a low−grade lead−zinc ore containing silver[J]. Nonferrous metals(Mineral processing section), 2019(4): 32−39.

    Google Scholar

    [43] 毛志丹, 谢克强, 孔德全, 等. 云南某复杂硫、氧混合铅锌矿浮选实验研究[J]. 矿冶工程, 2021, 41(6): 34−37.

    Google Scholar

    MAO Z D, XIE K Q, KONG D Q, et al. Flotation of mixed sulfide−oxide lead and zinc ore from Yunnan[J]. Mining and Metallurgical Engineering, 2021, 41(6): 34−37.

    Google Scholar

    [44] 阚赛琼, 宋涛, 梁溢强, 等. 云南某高硫高铁铅锌矿浮选分离试验研究[J]. 有色金属:选矿部分, 2020(3): 41−46.

    Google Scholar

    KAN S Q, SONG T, LIANG Y Q, et al. Research on flotation separation of high sulfur and high iron Pb−Zn ore in Yunnan province[J]. Nonferrous metals(Mineral processing section), 2020(3): 41−46.

    Google Scholar

    [45] 赵志强, 缪建成, 贺政, 等. 提高栖霞山深部银铅锌矿石选别指标新工艺研究及应用[J]. 有色金属:选矿部分, 2019(5): 63−70.

    Google Scholar

    ZHAO Z Q, MIAO J C, HE Z, et al. The research and application of new technology to improve the separation index of silver bearing lead−zinc ore in Qixia mountain[J]. Nonferrous metals (Mineral processing section), 2019(5): 63−70.

    Google Scholar

    [46] 罗仙平, 程琍琍, 胡敏, 等. 安徽新桥铅锌矿石电位调控浮选工艺研究[J]. 金属矿山, 2008(2): 61−65.

    Google Scholar

    LUO X P, CHENG L L, HU M, et al. Investigation on potential controlled flotation process for Pb−Zn ore from Anhui Xinqiao mine[J]. Metal Mine, 2008(2): 61−65.

    Google Scholar

    [47] 王金庆, 严群, 曹志明, 等. 锡铁山铅锌矿选矿工艺沿革评述[J]. 金属矿山, 2017(2): 76−80. doi: 10.3969/j.issn.1001-1250.2017.02.015

    CrossRef Google Scholar

    WANG J Q, YAN Q, CAO Z M, et al. Evaluation of history of mineral processing process for Xitieshan lead−zinc ore[J]. Metal Mine, 2017(2): 76−80. doi: 10.3969/j.issn.1001-1250.2017.02.015

    CrossRef Google Scholar

    [48] 刘运财, 邬顺科, 张康生. 凡口铅锌矿近十年选矿技术进展[J]. 矿冶工程, 2007, 27(4): 39−41.

    Google Scholar

    LIU Y C, WU S K, ZHANG K S. Development of mineral processing technology in Fankou lead−zinc mine in the last decade[J]. Mining and Metallurgical Engineering, 2007, 27(4): 39−41.

    Google Scholar

    [49] 孙肇淑, 伍敬峰, 谢用均. 凡口铅锌矿选矿厂生产技术改造[J]. 有色金属, 1998(S1): 35−40.

    Google Scholar

    SUN Z S, WU J F, XIE Y J. The production technique transformation of fankou lead zinc mine mineral processine plant[J]. Nonferrous metals, 1998(S1): 35−40.

    Google Scholar

    [50] 黄超军, 郭腾博, 李坤, 等. 氧化铅锌矿浮选法研究进展[J]. 金属矿山, 2019(9): 8−14.

    Google Scholar

    HUANG C J, GUO T B, LI K, et al. Progress on oxidized lead−zinc ore flotation methods[J]. Metal Mine, 2019(9): 8−14.

    Google Scholar

    [51] 卜显忠, 陈瑶. 我国氧化铅锌矿石选矿技术研究进展[J]. 金属矿山, 2019(7): 118−123.

    Google Scholar

    BU X Z, CHEN Y. Research progress of oxidized lead−zinc ore processing in China[J]. Metal Mine, 2019(7): 118−123.

    Google Scholar

    [52] 兰志强, 蓝卓越, 张琦福. 氧化铅锌矿利用工艺技术研究进展[J]. 矿产综合利用, 2015(5): 8−12.

    Google Scholar

    LAN Z Q, LAN Z Y, ZHANG Q F. Progress of technology for the utilization of the lead−zinc oxide ore[J]. Multipurpose Utilization of Mineral Resources, 2015(5): 8−12.

    Google Scholar

    [53] 胡岳华, 王淀佐. 氧化铅锌矿浮选的理论与实践—国外氧化铅锌矿浮选评述[J]. 有色矿冶, 1986(2): 14−22.

    Google Scholar

    HU Y H, WANG D Z. Theory and practice of flotation of lead and zinc oxide ores − a review of flotation of lead and zinc oxide ores abroad[J]. Non ferrous mining and metallurgy, 1986(2): 14−22.

    Google Scholar

    [54] 戴新宇, 王昌良, 饶系英. 某铅锌矿选矿工艺试验研究[J]. 有色金属:选矿部分, 2006(3): 19−22.

    Google Scholar

    DAI X Y, WANG C L, RAO Z Y. Research on mineral processing technology for aceration lead−zinc ore[J]. Nonferrous metals(Mineral processing section), 2006(3): 19−22.

    Google Scholar

    [55] 乔吉波, 杨玉珠. 宁南难选氧化硫化混合铅锌矿选矿工艺研究[J]. 矿产综合利用, 2013(1): 19−22.

    Google Scholar

    QIAO J B, YANG Y Z. Research on beneficiation process for a refractory oxidation−sulfidation lead−zinc bulk ore in Ningnan[J]. Multipurpose Utilization of Mineral Resources, 2013(1): 19−22.

    Google Scholar

    [56] 邓攀. 某氧硫混合铅锌矿选矿试验研究[J]. 现代矿业, 2022, 38(11): 120−123. doi: 10.3969/j.issn.1674-6082.2022.11.027

    CrossRef Google Scholar

    DENG P. Experimental study on beneficiation of an oxysulfide mixed lead−zinc ore[J]. Modern Mining, 2022, 38(11): 120−123. doi: 10.3969/j.issn.1674-6082.2022.11.027

    CrossRef Google Scholar

    [57] 刘兵, 肖骏, 陈代雄, 等. 某高泥型硫氧混合铅锌矿选矿技术研究及工业实践[J]. 矿冶, 2017(1): 32−37.

    Google Scholar

    LIU B, XIAO J, CHEN D X, et al. Benefication technology study and industrial practice of a high mud sulfur oxygen Pb−Zn ore[J]. Mining and Metallurgy, 2017(1): 32−37.

    Google Scholar

    [58] 吕超, 梁溢强, 赵轩, 等. 西南地区某铅锌矿重介质−浮选联合工艺分选试验研究[J]. 矿业研究与开发, 2019, 39(3): 33−37.

    Google Scholar

    LV C, LIANG Y Q, ZHAO X, et al. Experimental study on separation of heavy medium−flotation combined process for a lead−zinc mine in southwest China[J]. Mining Research and Development, 2019, 39(3): 33−37.

    Google Scholar

    [59] 汪先道, 马原琳, 阚赛琼, 等. 陕西某氧化锌矿浮选−重选联合工艺研究[J]. 云南冶金, 2022, 51(6): 62−66.

    Google Scholar

    WANG X D, MA Y L, KAN S Q, et al. Technical study on flotation−gravity separation joint process of one zinc oxide ore in Shannxi[J]. Yunnan Metallurgy, 2022, 51(6): 62−66.

    Google Scholar

    [60] 曾懋华, 颜美凤, 奚长生, 等. 从凡口铅锌矿尾矿中回收铅锌[J]. 金属矿山, 2007(9): 123−126.

    Google Scholar

    ZENG M H, YAN M F, XI C S, et al. Recovery of lead−zinc from tailings of Fankou lead−zinc mine[J]. Metal Mine, 2007(9): 123−126.

    Google Scholar

    [61] 程倩, 王明, 万宏民, 等. 某低品位铅锌矿选矿工艺研究[J]. 矿产综合利用, 2021(1): 65−71. doi: 10.3969/j.issn.1000-6532.2021.01.010

    CrossRef Google Scholar

    CHENG Q, WANG M, WAN H M, et al. Study on mineral processing technology for a low−grade lead−zinc ore[J]. Multipurpose Utilization of Mineral Resources, 2021(1): 65−71. doi: 10.3969/j.issn.1000-6532.2021.01.010

    CrossRef Google Scholar

    [62] 罗仙平, 杜显彦, 赵云翔, 等. 内蒙古某低品位难选铅锌矿石选矿工艺研究[J]. 金属矿山, 2013(10): 58−62.

    Google Scholar

    LUO X P, DU X Y, ZHAO Y X, et al. Experimental study on beneficiation for a refractory low−grade lead−zinc ore of Inner Mongolia[J]. Metal Mine, 2013(10): 58−62.

    Google Scholar

    [63] 童雄, 周庆华, 何剑, 等. 铁闪锌矿的选矿研究概况[J]. 金属矿山, 2006(6): 8−12.

    Google Scholar

    TONG X, ZHOU Q H, HE J, et al. Research on mineral processing of marmatite ore[J]. Metal Mine, 2006(6): 8−12.

    Google Scholar

    [64] 黄安平, 罗远波. 智能预选抛废在铅锌金银多金属矿中的应用及生产实践[J]. 湖南有色金属, 2022, 38(4): 153−156.

    Google Scholar

    HUANG A P, LUO Y B. Application and production practice of intelligent preconcentration discarding in lead zinc gold silver polymetallic ore[J]. Hunan Nonferrous Metals, 2022, 38(4): 153−156.

    Google Scholar

    [65] 魏永玺, 张鲁, 陈帆帆. 基于X射线智能分选的预先抛废在某低品位铅锌矿中的应用[J]. 甘肃冶金, 2022, 44(3): 4−9. doi: 10.3969/j.issn.1672-4461.2022.03.003

    CrossRef Google Scholar

    WEI Y X, ZHANG L, CHEN F F. Application of pre−discarding based on X−ray intelligent separation in a low grade lead−zinc mine[J]. Gansu Metallurgy, 2022, 44(3): 4−9. doi: 10.3969/j.issn.1672-4461.2022.03.003

    CrossRef Google Scholar

    [66] 李旭. 含锌铅精矿生物选择性浸锌及机理研究[D]. 北京: 北京有色金属研究总院, 2020.

    Google Scholar

    LI X. Study on the bioselective zinc leaching and mechanism of zinc containing lead concentrates[D]. Beijing: Beijing General Research Institute of Non ferrous Metals, 2020.

    Google Scholar

    [67] 李珊珊, 胡慧萍, 张维, 等. 云南兰坪低品位氧化锌矿氨浸渣可浮性试验研究[J]. 有色金属(选矿部分), 2012(2): 15−20.

    Google Scholar

    LI S S, HU H P, ZHANG W, et al. Research on the flotation process of leaching slag from low grade zinc oxide ore in lanping of Yunnan[J]. Nonferrous metals(Mineral processing section), 2012(2): 15−20.

    Google Scholar

    [68] 徐瑾, 章晓林, 王其宏. 云南某低品位氧化铅锌矿选冶联合新工艺研究[J]. 矿冶, 2018, 27(5): 5−10.

    Google Scholar

    XU J, ZHANG X L, WANG Q H. New benefciation−metallurgy combined process study on a low grade lead zinc oxide ore in Yunnan province[J]. Mining and Metallurgy, 2018, 27(5): 5−10.

    Google Scholar

    [69] 程建国. 低品位微细粒氧化铅锌矿选冶工艺研究[J]. 矿冶工程, 2013, 33(5): 106−110. doi: 10.3969/j.issn.0253-6099.2013.05.027

    CrossRef Google Scholar

    CHENG J G. Beneficiation−metallurgy technology for low−grade fine−grained lead−zinc oxide ore[J]. Mining and Metallurgical Engineering, 2013, 33(5): 106−110. doi: 10.3969/j.issn.0253-6099.2013.05.027

    CrossRef Google Scholar

    [70] 窦源东, 张建华, 王涛. 河北某低品位难选铅锌矿选矿工艺优化研究[J]. 中国矿业, 2023, 32(1): 134−140.

    Google Scholar

    DOU Y D, ZHANG J H, WANG T. Study on the optimization of beneficiation technology of a low grade refractory lead−zinc ore in Hebei province[J]. China Mining Magazine, 2023, 32(1): 134−140.

    Google Scholar

    [71] 朱贤文, 王阳, 王朝, 等. 四川某硫化铅锌矿石铅浮选工艺优化研究[J]. 金属矿山, 2022(5): 123−128.

    Google Scholar

    ZHU X W, WANG Y, WANG Z, et al. Research on optimization of lead flotation proceesing of a lead−zinc sulfur ores in Sichuan[J]. Metal Mine, 2022(5): 123−128.

    Google Scholar

    [72] 胡陈强, 郎召有, 高连启, 等. 云南某高硫铅锌矿浮选分离工艺研究[J]. 矿产综合利用, 2022(5): 158−163.

    Google Scholar

    HU C Q, LANG Z Y, GAO L Q, et al. Study on flotation separation of high sulfur lead−zinc ore from Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2022(5): 158−163.

    Google Scholar

    [73] 丁声强. 铅锌硫化矿低碱分离技术研究[D]. 江西理工大学, 2013.

    Google Scholar

    DING S Q. Research on low alkaline separation technology for lead−zinc sulfide ores[D]. Jiangxi University of Technology, 2013.

    Google Scholar

    [74] JIA Y, ZHANG Y, HUANG Y G, et al. Synthesis of trimethylacetyl thiobenzamide and its flotation separation performance of galena from sphalerite[J]. Applied Surface Science, 2021, 569.

    Google Scholar

    [75] 苏振华. 广西盘龙铅锌矿低碱浮选试验研究[J]. 矿冶, 2021, 30(2): 77−82. doi: 10.3969/j.issn.1005-7854.2021.02.012

    CrossRef Google Scholar

    SU Z H. Experimental study on the low−alkali flotation of Guangxi Panlong lead−zinc ore[J]. Mining and Metallurgy, 2021, 30(2): 77−82. doi: 10.3969/j.issn.1005-7854.2021.02.012

    CrossRef Google Scholar

    [76] 李博琦, 谢贤, 宋强, 等. 基于正交试验某高硫铅锌矿选矿工艺优化[J]. 有色金属工程, 2021, 11(6): 85−94. doi: 10.3969/j.issn.2095-1744.2021.06.013

    CrossRef Google Scholar

    LI B Q, XIE X, SONG Q, et al. Optimization of beneficiation process of a high−sulfur lead−zinc ore based on orthogonal test[J]. Nonferrous Metals Engineering, 2021, 11(6): 85−94. doi: 10.3969/j.issn.2095-1744.2021.06.013

    CrossRef Google Scholar

    [77] 曹飞, 曹进成, 吕良, 等. 内蒙古某富银铅锌硫化矿浮选分离试验研究[J]. 矿冶工程, 2023, 43(3): 1−5. doi: 10.3969/j.issn.0253-6099.2023.03.001

    CrossRef Google Scholar

    CAO F, CAO J C, LV L, et al. Experimental study on flotation of a Ag−rich Pb−Zn sulfide ore from Inner Mongolia[J]. Mining and Metallurgical Engineering, 2023, 43(3): 1−5. doi: 10.3969/j.issn.0253-6099.2023.03.001

    CrossRef Google Scholar

    [78] 廖乾. 西藏某含银氧化铅矿石选矿工艺研究[J]. 金属矿山, 2018(2): 85−88.

    Google Scholar

    LIAO Q. Beneficiation technology research of a silver bearing lead oxidized ore in Tibet[J]. Metal Mine, 2018(2): 85−88.

    Google Scholar

    [79] 王祖旭. 用新型螯合捕收剂分选云南某氧化铅锌矿石[J]. 金属矿山, 2014(7): 89−93.

    Google Scholar

    WANG Z X. Separation of a lead−zinc oxide ore in Yunnan with a new chelating collector[J]. Metal Mine, 2014(7): 89−93.

    Google Scholar

    [80] 谭欣, 李长根. 螯合捕收剂CF对氧化铅锌矿捕收性能初探[J]. 有色金属:选矿部分, 2002(4): 31−36.

    Google Scholar

    TAN X, LI C G. Study of flotation of the lead and zinc oxide ores by using chelate CF as collector[J]. Non ferrous Metals: Mineral Processing, 2002(4): 31−36.

    Google Scholar

    [81] 王福良. 铜铅锌铁主要硫化氧化矿物浮选的基础理论研究[D]. 沈阳: 东北大学, 2008.

    Google Scholar

    WANG F L. Basic theoretical study on flotation of copper, lead, zinc and iron main sulfide oxide minerals[D]. Shenyang: Northeast University, 2008.

    Google Scholar

    [82] 靳晨曦, 马子龙, 曹亦俊, 等. 极低品位泥质难选氧化锌矿浮选试验研究[J]. 矿产综合利用, 2017(1): 70−75.

    Google Scholar

    JIN C X, MA Z L, CAO Y J, et al. Flotation atudy on aeparating the extremely low−grade and argillaceous refractory oxide zinc[J]. Multipurpose Utilization of Mineral Resources, 2017(1): 70−75.

    Google Scholar

    [83] 蔡锦鹏. 菱锌矿加温强化硫化机理研究[D]. 昆明理工大学, 2019.

    Google Scholar

    CAI J P. Study on the mechanism of smithsonite heating strengthening sulfuration[D]. Kunming University of Science and Technology, 2019.

    Google Scholar

    [84] 李国栋. 抑铅浮锌分离铅锌混合精矿的工艺及机理研究[D]. 昆明: 昆明理工大学, 2014.

    Google Scholar

    LI G D. Research on the process and mechanism of separating lead zinc mixed concentrate by suppressing lead and floating zinc[D]. Kunming: Kunming University of Science and Technology, 2014.

    Google Scholar

    [85] PRESTIDGE C A, SKINNER W M, RALSTON J, et al. Copper(II) activationand cyanide deactivation of zinc sulphide under mildly alkaline conditions[J]. Appl. Surf. Sci., 1997, 108(3): 333−344. doi: 10.1016/S0169-4332(96)00681-2

    CrossRef Google Scholar

    [86] 杨备, 刘卫. 提高某铅锌伴生银矿选矿指标试验研究[J]. 矿产保护与利用, 2012(6): 25−27.

    Google Scholar

    YANG B, LIU W. Experimental study on improvement of dressing indexes for a lead−zinc−associated silver ore[J]. Conservation and Utilization of Mineral Resources, 2012(6): 25−27.

    Google Scholar

    [87] 黄雪约, 张其东, 尚鹤, 等. 内蒙古某复杂铅锌多金属矿浮选试验研究[J]. 矿冶, 2022, 31(4): 35−4263. doi: 10.3969/j.issn.1005-7854.2022.04.006

    CrossRef Google Scholar

    HUANG X Y, ZHANG Q D, SHANG H, et al. Floatation experimental study of a complex Pb−Zn polymetallic sulfide ore in Inner Mongolia[J]. Mining and Metallurgy, 2022, 31(4): 35−4263. doi: 10.3969/j.issn.1005-7854.2022.04.006

    CrossRef Google Scholar

    [88] 冯其明, 周荣. 经铜离子活化后的某铅锌硫混合精矿中闪锌矿的浮选分离研究[J]. 矿冶工程, 2011, 31(5): 32−34. doi: 10.3969/j.issn.0253-6099.2011.05.008

    CrossRef Google Scholar

    FENG Q M, ZHOU R. Flotation separation of sphalerite from Pb−Zn−S bulk concentrate activated by cupric sulfate[J]. Mining and Metallurgical Engineering, 2011, 31(5): 32−34. doi: 10.3969/j.issn.0253-6099.2011.05.008

    CrossRef Google Scholar

    [89] 李健民, 宋凯伟, 章晓林, 等. 组合抑制剂柠檬酸钠和焦磷酸钠在某铅锌矿分离浮选中的作用[J]. 过程工程学报, 2017, 17(3): 500−505.

    Google Scholar

    LI J M, SONG K W, ZHANG X L, et al. Effect of combined reagents of sodium citrate and sodium pyrophosphate on flotation separation of a polymetallic lead−zinc ore[J]. The Chinese Journal of Process Engineering, 2017, 17(3): 500−505.

    Google Scholar

    [90] 刘润清, 孙伟, 胡岳华, 等. 巯基类小分子有机抑制剂对复杂硫化矿物浮选行为的抑制机理[J]. 中国有色金属学报, 2006(4): 746−751.

    Google Scholar

    LIU R Q, SUN W, HU Y H, et al. Depression mechanism of small molecular mercapto organic depressants on flotation behavior of complex sulfides[J]. The Chinese Journal of Nonferrous Metals, 2006(4): 746−751.

    Google Scholar

    [91] 王阳, 卜显忠, 翁存建. 新型有机抑制剂对铅锌分离的影响及其作用机理[J]. 矿业研究与开发, 2017, 37(5): 94−97.

    Google Scholar

    WANG Y, BU X Z, WENG C J. The influence of new organic inhibitor on the lead−zinc separation and its action mechanism[J]. Mining Research and Development, 2017, 37(5): 94−97.

    Google Scholar

    [92] 谢贤, 童雄, 侯凯, 等. X−43活化铁闪锌矿的优化试验[J]. 武汉工程大学学报, 2015(5): 6−10. doi: 10.3969/j.issn.1674-2869.2015.05.002

    CrossRef Google Scholar

    XIE X, TONG X, HOU K, et al. Optimal test of marmatite with new activator X−43[J]. Journal of Wuhan Institute of Technology, 2015(5): 6−10. doi: 10.3969/j.issn.1674-2869.2015.05.002

    CrossRef Google Scholar

    [93] 谢贤, 童雄, 崔毅琪, 等. 几种活化剂对铁闪锌矿的活化性能[J]. 金属矿山, 2010(12): 50−53.

    Google Scholar

    XIE X, TONG X, CUI Y Q, et al. Study on activation performance of several kinds of activators on marmatite[J]. Metal Mine, 2010(12): 50−53.

    Google Scholar

    [94] 沈卫卫, 赵业雄, 李峰. 乌拉根铅锌矿选矿工艺优化和生产实践[J]. 中国矿业, 2016, 25(3): 112−116.

    Google Scholar

    SHEN W W, ZHAO Y X, LI F. Technological optimization and practice of mineral processing technology in Wulagen lead−zinc mine[J]. China Mining Magazine, 2016, 25(3): 112−116.

    Google Scholar

    [95] 佚名. 山特维克CH865圆锥破助力乌拉特后旗紫金矿业增产纪实[J]. 矿业装备, 2020(5): 11−13.

    Google Scholar

    NO NAME. Record of Shantevik CH865 cone breaking assists the production increase of Zijin Mining in Wulathou Banner[J]. Mining Equipment, 2020(5): 11−13.

    Google Scholar

    [96] 莫峰, 陈华萍, 吉灿荣. 高压辊磨机在有色多金属矿的应用[J]. 现代矿业, 2012, 27(6): 107−109.

    Google Scholar

    MO F, CHEN H P, JI C R. Application of high pressure roller mill in nonferrous polymetallic mines[J]. Modern Mining, 2012, 27(6): 107−109.

    Google Scholar

    [97] 沙玄阳, 李世纯, 魏盛甲, 等. 锡铁山铅锌矿磨矿−分级系统改造实践[J]. 现代矿业, 2018, 34(10): 126−127. doi: 10.3969/j.issn.1674-6082.2018.10.036

    CrossRef Google Scholar

    SHA X Y, LI S C, WEI S J, et al. Practice of grinding−classification system in Xitieshan lead−zinc mine[J]. Modern Mining, 2018, 34(10): 126−127. doi: 10.3969/j.issn.1674-6082.2018.10.036

    CrossRef Google Scholar

    [98] 和智聪, 芮鹤松, 李玉华, 等. 3000 t/d硫化矿选厂设计与生产实践[J]. 中国矿山工程, 2017, 46(6): 21−25. doi: 10.3969/j.issn.1672-609X.2017.06.005

    CrossRef Google Scholar

    HE Z C, RUI H S, LI Y H, et al. Design and production practice of 3000 t/d sulfide ore dressing plant[J]. China Mine Engineering, 2017, 46(6): 21−25. doi: 10.3969/j.issn.1672-609X.2017.06.005

    CrossRef Google Scholar

    [99] 任英东, 肖庆飞, 周强, 等. 某铅锌矿立磨机与球磨机磨矿效果对比试验研究[J]. 矿产保护与利用, 2023, 43(1): 73−78.

    Google Scholar

    REN Y D, XIAO Q F, ZHOU Q, et al. Comparative experimental study on the grinding effect of certain lead−zinc mine through vertical mill and ball mill[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 73−78.

    Google Scholar

    [100] 肖骏, 陈代雄, 杨建文, 等. 凡口铅锌矿铅锌硫混合精矿分离试验研究[J]. 有色金属科学与工程, 2015, 6(2): 104−110.

    Google Scholar

    XIAO J, CHEN D X, YANG J W, et al. Separation tests of the lead−zinc−sulfur mixed concentrate in Fankou lead and zinc mine[J]. Nonferrous Metals Science and Engineering, 2015, 6(2): 104−110.

    Google Scholar

    [101] 敖顺福, 王正奇, 陈丽昆, 等. 立式螺旋搅拌磨机在某硫精矿再选中的应用[J]. 矿山机械, 2020, 48(7): 45−49. doi: 10.3969/j.issn.1001-3954.2020.07.011

    CrossRef Google Scholar

    AO S F, WANG Z Q, CHEN L K, et al. Application of vertical screw stirring mill to re−cleaning of a sulfur concentrate[J]. Mining & Processing Equipment, 2020, 48(7): 45−49. doi: 10.3969/j.issn.1001-3954.2020.07.011

    CrossRef Google Scholar

    [102] 阙成功. 艾砂磨在新疆阿舍勒铜矿的工业应用[J]. 新疆有色金属, 2021, 44(4): 23−26.

    Google Scholar

    QUE C G. Industrial application of isa mill in Xinjiang Ashele copper mine[J]. Xinjiang Nonferrous Metals, 2021, 44(4): 23−26.

    Google Scholar

    [103] 赖茂河, 吴锋, 韩志彬, 等. GF−24型浮选机在某铅锌矿的改造应用研究[C]. 第八届全国选矿专业学术年会暨矿产资源绿色高效开发利用高峰论坛论文集. 2016: 255–258.

    Google Scholar

    LAI M H, WU F, HAN Z B, et al. Research on the transformation and application of GF−24 flotation machine in a lead zinc mine[C]// Proceedings of the 8th National Academic Annual Conference on Mineral Processing and the Summit Forum on Green and Efficient Development and Utilization of Mineral Resources 2016: 255–258.

    Google Scholar

    [104] 张智平, 芮凯, 宋福官. 充气机械搅拌浮选机在栖霞山铅锌矿的应用[C]// 2009年全国选矿学术会议论文集. 2009: 339–341.

    Google Scholar

    ZHANG Z P, RUI K, SONG F G. The application of aerated mechanical stirring flotation machine in Qixiashan lead zinc mine[C]// Proceedings of the 2009 National Mineral Processing Academic Conference 2009: 339–341.

    Google Scholar

    [105] 陈如凤, 缪建成, 赵志强, 等. 南京栖霞山柱机联合浮选铅锌硫的研究与应用[J]. 有色金属(选矿部分), 2018(1): 38−42.

    Google Scholar

    CHEN R F, MIAO J C, ZHAO Z Q, et al. Research and application of column machine combined flotation of lead and zinc sulfide in Qixiashan Nanjing[J]. Nonferrous metals(Mineral processing section), 2018(1): 38−42.

    Google Scholar

    [106] 张建刚, 吉红, 卿林江, 等. CCF浮选柱在铅锌矿选矿中的应用[J]. 矿产保护与利用, 2015(4): 38−42. doi: 10.13779/j.cnki.issn1001-0076.2015.04.008

    CrossRef Google Scholar

    ZHANG J G, JI H, QING L J, et al. The application of CCF flotation column in separation of lead−zinc ore[J]. Conservation and Utilization of Mineral Resources, 2015(4): 38−42. doi: 10.13779/j.cnki.issn1001-0076.2015.04.008

    CrossRef Google Scholar

    [107] 刘炯天, 王永田, 李小兵, 等. 柴山铅锌矿石旋流−静态微泡柱浮选试验研究[J]. 金属矿山, 2008, 380(2): 66−69. doi: 10.3321/j.issn:1001-1250.2008.02.016

    CrossRef Google Scholar

    LIU J T, WANG Y T, LI X B, et al. Experimental study on beneficiation of Chaishan lead−zinc ore by cyclonic−static microbubble flotation column[J]. Metal Mine, 2008, 380(2): 66−69. doi: 10.3321/j.issn:1001-1250.2008.02.016

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(641) PDF downloads(16) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint