Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 5
Article Contents

LIU Shuo, LI Fangxu, DAI Zilin. Floatation Performance and Adsorption Mechanism of A Novel Bipolar Collector Alkyl Hydroxamic Acid Sulfonate for Scheelite[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 11-18. doi: 10.13779/j.cnki.issn1001-0076.2023.05.002
Citation: LIU Shuo, LI Fangxu, DAI Zilin. Floatation Performance and Adsorption Mechanism of A Novel Bipolar Collector Alkyl Hydroxamic Acid Sulfonate for Scheelite[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 11-18. doi: 10.13779/j.cnki.issn1001-0076.2023.05.002

Floatation Performance and Adsorption Mechanism of A Novel Bipolar Collector Alkyl Hydroxamic Acid Sulfonate for Scheelite

More Information
  • A novel collector, alkyl hydroxamic acid sulfonate (MES), was synthesized using the inexpensive and widely utilized raw materials of fatty acid methyl ester sodium sulfonate and hydroxylamine hydrochloride. The flotation performance and adsorption mechanism of individual minerals were investigated using Fourier−transform infrared spectroscopy (FTIR), Zeta potential analysis, and X−ray photoelectron spectroscopy (XPS). The results of micro−flotation test revealed that compared to oleic acid, scheelite exhibited better selectivity than calcite and fluorite. At a pH of 10.0 and a dosage of 30 mg/L, the recoveries for scheelite, calcite, and fluorite were 85.9%, 62.8%, and 53.5% respectively. Batch flotation test outcomes demonstrated that for actual ore with a feed grade of 0.27%, the tungsten concentrate grade obtained using MES was higher than that achieved with oleic acid. Under the flotation conditions of pulp pH=10.0, sodium silicate dosage at 1000 g/t, and MES dosage at 720 g/t, the tungsten concentrate grade was measured at 1.40% with a recovery rate of 78.89%. Contact angle test results indicated the contact angle increased with the increase of MES dosage, consistent with findings from the single mineral flotation concentration experiment. Zeta potential and FTIR analyses revealed an increase in the electronegativity of scheelite after MES treatment, and characteristic peaks corresponding to −CH3, −CH2, O=C−NH, and −SO3H in MES appeared on the surface of scheelite, indicating firm adsorption by MES onto its surface. Additionally, XPS analysis confirmed that MES chemically reacted with the Ca and W atoms through −CONHOH and −SO3H, forming M−MES(M=Ca, W) complexes adsorbed onto scheelite surfaces.

  • 加载中
  • [1] 孙伟, 卫召, 韩海生, 等. 钨矿浮选化学及其实践[J]. 金属矿山, 2021(1): 24−41.

    Google Scholar

    SUN W, WEI Z, HAN H S, et al. Flotation chemistry of tungsten ore and its practice[J]. Metal Mine, 2021(1): 24−41.

    Google Scholar

    [2] WANG X, QIN W Q, JIAO F, et al. Review of tungsten resource reserves, tungsten concentrate production and tungsten beneficiation technology in China[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(7): 2318−2338.

    Google Scholar

    [3] 夏庆霖, 汪新庆, 刘壮壮, 等. 中国钨矿成矿地质特征与资源潜力分析[J]. 地学前缘, 2018, 25(3): 50−58.

    Google Scholar

    XIA Q L, WANG X Q, LIU Z Z, et al. Analysis of metallogenic geological characteristics and resource potential of tungsten deposits in China[J]. Earth Science Frontiers, 2018, 25(3): 50−58.

    Google Scholar

    [4] 蔡改贫, 吴叶彬, 陈少平. 世界钨矿资源浅析[J]. 世界有色金属, 2009(4): 62−65.

    Google Scholar

    CAI G P, WU Y B, CHEN S P. Analysis on world tungsten resources[J]. World Nonferrous Metals, 2009(4): 62−65.

    Google Scholar

    [5] 艾光华, 徐晓衣, 邬海滨, 等. 江西某低品位白钨矿选矿试验研究[J]. 有色金属工程, 2017, 7(1): 44−48+81.

    Google Scholar

    AI G H, XU X Y, WU H B, et al. Beneficiation test of a low−grade scheelite in Jiangxi[J]. Nonferrous Metals Engineering, 2017, 7(1): 44−48+81.

    Google Scholar

    [6] 郭亮明. 白钨矿浮选731捕收剂低温乳化试验研究[J]. 金属矿山, 2002(7): 26−28.

    Google Scholar

    GUO L M. Experimental study on low−temperature emulsification of scheelite flotation 731 collector[J]. Metal Mine, 2002(7): 26−28.

    Google Scholar

    [7] 李淑菲, 李强. 白钨矿浮选研究现状[J]. 矿产综合利用, 2017, 32(1): 47−50.

    Google Scholar

    XIAO W G. Roughing test study on recovery of low−grade scheelite from sulfur tailings[J]. China Tungsten Industry, 2017, 32(1): 47−50.

    Google Scholar

    [8] 彭会清, 焦文亚, 吴迪. 提高某白钨矿石浮选指标试验[J]. 金属矿山, 2017(9): 106−110.

    Google Scholar

    PENG H Q, JIAO W Y, WU D. Test on improving flotation index of a scheelite ore[J]. Metal Mine, 2017(9): 106−110.

    Google Scholar

    [9] NATHALIE KUPKA, MARTIN RUDOLPH. Froth flotation of scheelite – A review[J]. International Journal of Mining Science and Technology, 2018, 28(3): 373−384. doi: 10.1016/j.ijmst.2017.12.001

    CrossRef Google Scholar

    [10] 卫召, 孙伟, 韩海生, 等. 钨矿浮选工艺进展与实践[J]. 金属矿山, 2021(6): 60−72.

    Google Scholar

    WEI Z, SUN W, HAN H S, et al. Progress and practice of tungsten flotation Process[J]. Metal Mine, 2021(6): 60−72.

    Google Scholar

    [11] 高莉, 罗仙平, 许鸿国, 等. 白钨矿捕收剂研究现状及展望[J]. 中国矿业, 2014, 23(9): 121−124.

    Google Scholar

    GAO L, LUO X P, XU H G, et al. Research status and prospect of scheelite collector[J]. China Mining Industry, 2014, 23(9): 121−124.

    Google Scholar

    [12] 李天光, 邱显扬, 周晓彤. 白钨矿浮选药剂研究现状[J]. 材料研究与应用, 2018, 12(1): 8−12.

    Google Scholar

    LI T G, QIU X Y, ZHOU X T. Research status of scheelite flotation reagents[J]. Materials Research and Application, 2018, 12(1): 8−12.

    Google Scholar

    [13] 张庆鹏, 刘润清, 曹学锋, 等. 脂肪酸类白钨矿捕收剂的结构性能关系研究[J]. 有色金属科学与工程, 2013, 4(5): 85−90.

    Google Scholar

    ZHANG Q P, LIU R Q, CAO X F, et al. Study on the relationship between structure and properties of fatty acid scheelite collectors[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 85−90.

    Google Scholar

    [14] 王建军, 卫召, 韩海生, 等. 钨矿浮选药剂设计与组装[J]. 金属矿山, 2021(6): 26−43.

    Google Scholar

    WANG J J, WEI Z HAN H S. Design and Assembly of flotation reagent for tungsten ore[J]. Metal Mine, 2021(6): 26−43.

    Google Scholar

    [15] QI J, ZHAO G, LIU S, et al. Strengthening flotation enrichment of Pb(Ⅱ)−activated scheelite with N−[(3−hydroxyamino)−propoxy]−N−hexyl dithiocarbamate[J]. Journal of Industrial and Engineering Chemistry, 2022, 114: 338−346.

    Google Scholar

    [16] GAO Y S, GAO Z Y, SUN W, et al. Selective flotation of scheelite from calcite: A novel reagent scheme[J]. International Journal of Mineral Processing, 2016, 154: 10−15.

    Google Scholar

    [17] YAO X, YU X Y, WANG L P, et al. Preparation of cinnamic hydroxamic acid collector and study on flotation characteristics and mechanism of scheelite[J]. International Journal of Mining Science and Technology, 2023, 33(6): 773−781.

    Google Scholar

    [18] HAN H S, X Y, HU Y H, et al. Replacing Petrov's process with atmospheric flotation using Pb−BHA complexes for separating scheelite from fluorite[J]. Minerals Engineering, 2020, 145: 106053.

    Google Scholar

    [19] DENG L Q, ZHAO G, ZHONG H, et al. Investigation on the selectivity of N −((hydroxyamino)−alkyl) alkylamide surfactants for scheelite/calcite flotation separation[J]. Journal of Industrial and Engineering Chemistry, 2016, 33: 131−141.

    Google Scholar

    [20] GUAN Z H, LU K W, ZHANG Y, et al. Mechanism of manganese ion interaction with the surface of scheelite and calcite and its effect on flotation separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: 129397.

    Google Scholar

    [21] 周佩玲. 赣南钨矿床中黑钨矿和白钨矿的红外光谱[J]. 矿物学报, 1984(4): 319−322.

    Google Scholar

    ZHOU P L. Infrared spectra of wolframite and scheelite in the tungsten deposit in southern Gannan[J]. Acta Minerologica Sinica, 1984(4): 319−322.

    Google Scholar

    [22] LIU M X, LI, H, JIANG T, et al. Flotation of coarse and fine pyrochlore using octyl hydroxamic acid and sodium oleate[J]. Minerals Engineering, 2019, 132.

    Google Scholar

    [23] 李方旭, 赵刚, 林日孝. 叔丁基苯甲羟肟酸与Pb(Ⅱ)的作用机理及在细粒黑钨矿活化浮选中的应用[J]. 矿冶工程, 2022, 42(1): 49−52.

    Google Scholar

    L I F X, ZHAO G, LIN R X. Effect mechanism of tert−butylbenzohydroxamic acid on Pb(Ⅱ) and its application in activated flotation of fine wolframite[J]. Mining and Metallurgy Engineering, 202, 42(1): 49−52.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views(204) PDF downloads(24) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint