Citation: | LIU Shuo, LI Fangxu, DAI Zilin. Floatation Performance and Adsorption Mechanism of A Novel Bipolar Collector Alkyl Hydroxamic Acid Sulfonate for Scheelite[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 11-18. doi: 10.13779/j.cnki.issn1001-0076.2023.05.002 |
A novel collector, alkyl hydroxamic acid sulfonate (MES), was synthesized using the inexpensive and widely utilized raw materials of fatty acid methyl ester sodium sulfonate and hydroxylamine hydrochloride. The flotation performance and adsorption mechanism of individual minerals were investigated using Fourier−transform infrared spectroscopy (FTIR), Zeta potential analysis, and X−ray photoelectron spectroscopy (XPS). The results of micro−flotation test revealed that compared to oleic acid, scheelite exhibited better selectivity than calcite and fluorite. At a pH of 10.0 and a dosage of 30 mg/L, the recoveries for scheelite, calcite, and fluorite were 85.9%, 62.8%, and 53.5% respectively. Batch flotation test outcomes demonstrated that for actual ore with a feed grade of 0.27%, the tungsten concentrate grade obtained using MES was higher than that achieved with oleic acid. Under the flotation conditions of pulp pH=10.0, sodium silicate dosage at 1000 g/t, and MES dosage at 720 g/t, the tungsten concentrate grade was measured at 1.40% with a recovery rate of 78.89%. Contact angle test results indicated the contact angle increased with the increase of MES dosage, consistent with findings from the single mineral flotation concentration experiment. Zeta potential and FTIR analyses revealed an increase in the electronegativity of scheelite after MES treatment, and characteristic peaks corresponding to −CH3, −CH2, O=C−NH, and −SO3H in MES appeared on the surface of scheelite, indicating firm adsorption by MES onto its surface. Additionally, XPS analysis confirmed that MES chemically reacted with the Ca and W atoms through −CONHOH and −SO3H, forming M−MES(M=Ca, W) complexes adsorbed onto scheelite surfaces.
[1] | 孙伟, 卫召, 韩海生, 等. 钨矿浮选化学及其实践[J]. 金属矿山, 2021(1): 24−41. SUN W, WEI Z, HAN H S, et al. Flotation chemistry of tungsten ore and its practice[J]. Metal Mine, 2021(1): 24−41. |
[2] | WANG X, QIN W Q, JIAO F, et al. Review of tungsten resource reserves, tungsten concentrate production and tungsten beneficiation technology in China[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(7): 2318−2338. |
[3] | 夏庆霖, 汪新庆, 刘壮壮, 等. 中国钨矿成矿地质特征与资源潜力分析[J]. 地学前缘, 2018, 25(3): 50−58. XIA Q L, WANG X Q, LIU Z Z, et al. Analysis of metallogenic geological characteristics and resource potential of tungsten deposits in China[J]. Earth Science Frontiers, 2018, 25(3): 50−58. |
[4] | 蔡改贫, 吴叶彬, 陈少平. 世界钨矿资源浅析[J]. 世界有色金属, 2009(4): 62−65. CAI G P, WU Y B, CHEN S P. Analysis on world tungsten resources[J]. World Nonferrous Metals, 2009(4): 62−65. |
[5] | 艾光华, 徐晓衣, 邬海滨, 等. 江西某低品位白钨矿选矿试验研究[J]. 有色金属工程, 2017, 7(1): 44−48+81. AI G H, XU X Y, WU H B, et al. Beneficiation test of a low−grade scheelite in Jiangxi[J]. Nonferrous Metals Engineering, 2017, 7(1): 44−48+81. |
[6] | 郭亮明. 白钨矿浮选731捕收剂低温乳化试验研究[J]. 金属矿山, 2002(7): 26−28. GUO L M. Experimental study on low−temperature emulsification of scheelite flotation 731 collector[J]. Metal Mine, 2002(7): 26−28. |
[7] | 李淑菲, 李强. 白钨矿浮选研究现状[J]. 矿产综合利用, 2017, 32(1): 47−50. XIAO W G. Roughing test study on recovery of low−grade scheelite from sulfur tailings[J]. China Tungsten Industry, 2017, 32(1): 47−50. |
[8] | 彭会清, 焦文亚, 吴迪. 提高某白钨矿石浮选指标试验[J]. 金属矿山, 2017(9): 106−110. PENG H Q, JIAO W Y, WU D. Test on improving flotation index of a scheelite ore[J]. Metal Mine, 2017(9): 106−110. |
[9] | NATHALIE KUPKA, MARTIN RUDOLPH. Froth flotation of scheelite – A review[J]. International Journal of Mining Science and Technology, 2018, 28(3): 373−384. doi: 10.1016/j.ijmst.2017.12.001 |
[10] | 卫召, 孙伟, 韩海生, 等. 钨矿浮选工艺进展与实践[J]. 金属矿山, 2021(6): 60−72. WEI Z, SUN W, HAN H S, et al. Progress and practice of tungsten flotation Process[J]. Metal Mine, 2021(6): 60−72. |
[11] | 高莉, 罗仙平, 许鸿国, 等. 白钨矿捕收剂研究现状及展望[J]. 中国矿业, 2014, 23(9): 121−124. GAO L, LUO X P, XU H G, et al. Research status and prospect of scheelite collector[J]. China Mining Industry, 2014, 23(9): 121−124. |
[12] | 李天光, 邱显扬, 周晓彤. 白钨矿浮选药剂研究现状[J]. 材料研究与应用, 2018, 12(1): 8−12. LI T G, QIU X Y, ZHOU X T. Research status of scheelite flotation reagents[J]. Materials Research and Application, 2018, 12(1): 8−12. |
[13] | 张庆鹏, 刘润清, 曹学锋, 等. 脂肪酸类白钨矿捕收剂的结构性能关系研究[J]. 有色金属科学与工程, 2013, 4(5): 85−90. ZHANG Q P, LIU R Q, CAO X F, et al. Study on the relationship between structure and properties of fatty acid scheelite collectors[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 85−90. |
[14] | 王建军, 卫召, 韩海生, 等. 钨矿浮选药剂设计与组装[J]. 金属矿山, 2021(6): 26−43. WANG J J, WEI Z HAN H S. Design and Assembly of flotation reagent for tungsten ore[J]. Metal Mine, 2021(6): 26−43. |
[15] | QI J, ZHAO G, LIU S, et al. Strengthening flotation enrichment of Pb(Ⅱ)−activated scheelite with N−[(3−hydroxyamino)−propoxy]−N−hexyl dithiocarbamate[J]. Journal of Industrial and Engineering Chemistry, 2022, 114: 338−346. |
[16] | GAO Y S, GAO Z Y, SUN W, et al. Selective flotation of scheelite from calcite: A novel reagent scheme[J]. International Journal of Mineral Processing, 2016, 154: 10−15. |
[17] | YAO X, YU X Y, WANG L P, et al. Preparation of cinnamic hydroxamic acid collector and study on flotation characteristics and mechanism of scheelite[J]. International Journal of Mining Science and Technology, 2023, 33(6): 773−781. |
[18] | HAN H S, X Y, HU Y H, et al. Replacing Petrov's process with atmospheric flotation using Pb−BHA complexes for separating scheelite from fluorite[J]. Minerals Engineering, 2020, 145: 106053. |
[19] | DENG L Q, ZHAO G, ZHONG H, et al. Investigation on the selectivity of N −((hydroxyamino)−alkyl) alkylamide surfactants for scheelite/calcite flotation separation[J]. Journal of Industrial and Engineering Chemistry, 2016, 33: 131−141. |
[20] | GUAN Z H, LU K W, ZHANG Y, et al. Mechanism of manganese ion interaction with the surface of scheelite and calcite and its effect on flotation separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: 129397. |
[21] | 周佩玲. 赣南钨矿床中黑钨矿和白钨矿的红外光谱[J]. 矿物学报, 1984(4): 319−322. ZHOU P L. Infrared spectra of wolframite and scheelite in the tungsten deposit in southern Gannan[J]. Acta Minerologica Sinica, 1984(4): 319−322. |
[22] | LIU M X, LI, H, JIANG T, et al. Flotation of coarse and fine pyrochlore using octyl hydroxamic acid and sodium oleate[J]. Minerals Engineering, 2019, 132. |
[23] | 李方旭, 赵刚, 林日孝. 叔丁基苯甲羟肟酸与Pb(Ⅱ)的作用机理及在细粒黑钨矿活化浮选中的应用[J]. 矿冶工程, 2022, 42(1): 49−52. L I F X, ZHAO G, LIN R X. Effect mechanism of tert−butylbenzohydroxamic acid on Pb(Ⅱ) and its application in activated flotation of fine wolframite[J]. Mining and Metallurgy Engineering, 202, 42(1): 49−52. |
XRD pattern of scheelite, calcite and fluorite
Synthesis route of bipolar scheelite collector
FTIR of a novel bipolar scheelite collector
Effect of pH value on flotation recovery
Effect of different reagent concentration on flotation recovery
Effect of different dosage of MES on contact Angle of scheelite
Effect of MES on the Zeta potential of scheelite at different pH
FTIR results of scheelite before and after MES adsorption
XPS results of scheelite before and after MES adsorption