Citation: | WANG Ruolin, HAN Haisheng, SUN Wenjuan, SUN Wei, ZHANG Hongliang, CHENG Yongbiao. Selective Inhibition Behavior and Mechanism of Al−starch Complex on Ultrafine Calcite in Scheelite Flotation[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 1-10. doi: 10.13779/j.cnki.issn1001-0076.2023.05.001 |
Ultrafine calcite was closely associated with scheelite, and its small volume, light weight, and large specific surface area resulted in difficulty inhibiting, which seriously affected the improvement of tungsten flotation index. In this study, the molecular structure of Al−starch was studied by synthesis reaction, cluster model calculation, and infrared spectrum analysis. The selective inhibition effect of Al−starch was revealed by flotation experiments of single mineral and actual ore, which was also compared with the effect of caustic starch. The selective inhibition effect of Al−starch was revealed by flotation experiments of single mineral and actual ore. The selective inhibition mechanism of Al−starch on fine calcite was analyzed by Zeta potential and X−ray photoelectron spectroscopy. The results confirmed that Al3+ was most easily chelated with the O6 and O1 of the starch molecule of trans structure to form O1—Al—O6 structure with the shortest bond length. Caustic starch could inhibit both scheelite and calcite, while Al−starch could only inhibit the flotation of ultrafine calcite, and increased the grade of WO3 in tungsten concentrate from 31.44% to 40.51% and realized the flotation separation of scheelite from calcite. The caustic starch made the surface potential of scheelite and calcite shift negatively through hydroxy, and also affected the surface characteristic atoms of Ca and O. Al−starch was selectively chemisorbed on the O site of the anionic group on the surface of calcite through metal group but did not affect the surface of scheelite, which changed the surface charge and characteristic atoms of ultrafine calcite and inhibit its flotation.
[1] | SEDDON MARK. 全球钨资源和未来供应[J]. 中国钨业, 2001(Z1): 136−138. SEDDON MARK. Global tungsten resources and future supply[J]. China Tungsten Industry, 2001(Z1): 136−138. |
[2] | 张洪川. 世界钨资源供需形势分析[D]. 北京: 中国地质大学, 2017. ZHANG H C. World tungsten resource supply and demand situation analysis[D]. Beijing: China University of Geosciences, 2017. |
[3] | 王明燕, 贾木欣, 肖仪武, 等. 中国钨矿资源现状及可持续发展对策[J]. 有色金属工程, 2014, 4(2): 76−80. WANG M Y, JIA M X, XIAO Y W, et al. Current situation and sustainable development strategy of tungsten mineral resources in China[J]. Non-ferrous Metal Engineering, 2014, 4(2): 76−80. |
[4] | WANG X, QIN W, JIAO F, et al. Review of tungsten resource reserves, tungsten concentrate production and tungsten beneficiation technology in China[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(7): 2318−2338. doi: 10.1016/S1003-6326(22)65950-8 |
[5] | 宁湘菡. 微细粒白钨矿与含钙脉石矿物浮选分离行为研究[D]. 赣州: 江西理工大学, 2020. NING X H. Study on flotation separation behavior of fine scheelite from calcium gangue minerals[D]. Ganzhou: Jiangxi University of Science and Technology, 2020. |
[6] | 罗丽芳. 微细粒白钨矿选择性絮凝行为研究[D]. 赣州: 江西理工大学, 2019. LUO L F. Study on selective flocculation behavior of fine scheelite[D]. Ganzhou: Jiangxi University of Science and Technology, 2019. |
[7] | CHEN W, CHEN F, BU X, et al. A significant improvement of fine scheelite flotation through rheological control of flotation pulp by using garnet[J]. Minerals Engineering, 2019, 138: 257−266. doi: 10.1016/j.mineng.2019.05.001 |
[8] | WANG R, WEI Z, HAN H, et al. Fluorite particles as a novel calcite recovery depressant in scheelite flotation using Pb−BHA complexes as collectors[J]. Minerals Engineering, 2019, 132: 84−91. doi: 10.1016/j.mineng.2018.11.057 |
[9] | WEI Z, HU Y, HAN H, et al. Selective flotation of scheelite from calcite using Al-Na2SiO3 polymer as depressant and Pb−BHA complexes as collector[J]. Minerals Engineering, 2018, 120: 29−34. doi: 10.1016/j.mineng.2018.01.036 |
[10] | HU Y, CHI R, XU Z. Solution chemistry study of salt-type mineral flotation systems: role of inorganic[J]. Dispersants Industrial and Engineering Chemistry Research, 2003, 42(8): 1641−1647. doi: 10.1021/ie020729b |
[11] | LEE H, 卢文光. 形状和表面因素对细粒方解石浮选的影响[J]. 国外金属矿选矿, 1989(7): 39−43+33. LEE H, LU W G. Influence of shape and surface factors on flotation of fine calcite[J]. Mineral Processing of Metal Ore Abroad, 1989(7): 39−43+33. |
[12] | LEE H, SMITH R W, 王力, 等. 颗粒形状和表面因素对细粒方解石浮选的影响[J]. 国外非金属矿, 1989(3): 12−17. LEE H, SMITH R W, WANG L, et al. Effect of particle shape and surface factors on flotation of fine calcite. Foreign Non-metallic Ore, 1989(3): 12−17. |
[13] | ZHOU W, CHEN H, OU L, et al. Aggregation of ultra-fine scheelite particles induced by hydrodynamic cavitation[J]. International Journal of Mineral Processing, 2016, 157: 236−240. doi: 10.1016/j.minpro.2016.11.003 |
[14] | CHEN W, FENG Q, ZHANG G, et al. Effect of energy input on flocculation process and flotation performance of fine scheelite using sodium oleate[J]. Minerals Engineering, 2017, 112: 27−35. doi: 10.1016/j.mineng.2017.07.002 |
[15] | 王建军, 卫召, 韩海生, 等. 钨矿浮选药剂设计与组装[J]. 金属矿山, 2021(6): 26−43. WANG J J, WEI Z, HAN H S, et al. Design and assembly of flotation reagent for tungsten ore[J]. Metal Mine, 2021(6): 26−43. |
[16] | 郑灿辉, 高延民, 谭晓飞, 等. 改性硅酸钠在低品位白钨矿浮选中的应用研究[J]. 中国钨业, 2018, 33(4): 58−61. doi: 10.3969/j.issn.1009-0622.2018.04.009 DENG C H, GAO Y M, TAN X F, et al. Application of modified sodium silicate in flotation of low grade scheelite[J]. China Tungsten Industry, 2018, 33(4): 58−61. doi: 10.3969/j.issn.1009-0622.2018.04.009 |
[17] | 邱廷省, 宋宜富, 邱仙辉, 等. 白钨矿浮选体系中大分子有机抑制剂的抑制性能[J]. 中国有色金属学报, 2017, 27(7): 1527−1534. QIU T S, SONG Y F, QIU X H, et al. Inhibition performance of macromolecular organic Inhibitors in scheelite flotation system[J]. Transactions of Nonferrous Metals Society of China. 2017, 27(7): 1527−1534. |
[18] | HAN H, HU Y, SUN W, et al. Fatty acid flotation versus BHA flotation of tungsten minerals and their performance in flotation practice[J]. International Journal of Mineral Processing, 2017, 159: 22−29. doi: 10.1016/j.minpro.2016.12.006 |
[19] | 李彬, 李海普, 张莎莎, 等. 玉米直链淀粉、支链淀粉的分离、表征及浮选应用[J]. 矿产保护与利用, 2011(5/6): 64−68. LI B, LI H P, ZHANG S S, et al. Separation, characterization and flotation application of amylose and amylopectin in maize[J]. Conservation and Utilization of Mineral Resources, 2011(5/6): 64−68. |
[20] | WEI Z, SUN W, HU Y, et al. Structures of Pb−BHA complexes adsorbed on scheelite surface[J]. Frontiers in Chemistry, 2019(7): 1−9. doi: 10.3389/fchem.2019.00001 |
[21] | SUN W, HAN H, SUN W, et al. Novel insights into the role of colloidal calcium dioleate in the flotation of calcium minerals[J]. Minerals Engineering, 2022, 175: 107274. doi: 10.1016/j.mineng.2021.107274 |
[22] | 孙文娟, 韩海生, 胡岳华, 等. 金属离子配位调控分子组装浮选理论及其研究进展[J]. 中国有色金属学报, 2020, 30(4): 927−941. SUN W J, HAN H S, HU Y H, et al. Research progress in molecular assembly flotation of metal ions[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(4): 927−941. |
[23] | YUE T, WU X. Depressing iron mineral by metallic-starch complex (MSC) in reverse flotation and its mechanism[J]. Minerals, 2018, 8(3): 85. doi: 10.3390/min8030085 |
[24] | WANG R, HAN H, SUN W, et al. Hydrophobic behavior of fluorite surface in strongly alkaline solution and its application in flotation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609: 125661. doi: 10.1016/j.colsurfa.2020.125661 |
[25] | WANG R, SUN W, HAN H, et al. Fluorite particles as a novel barite depressant in terms of surface transformation[J]. Minerals Engineering, 2021, 166: 106877. doi: 10.1016/j.mineng.2021.106877 |
[26] | WANG R, HAN H, SUN W, et al. Slow−release of fluorite and its effect on flotation separation of magnesite from calcite[J]. Minerals Engineering, 2022, 185: 107707. doi: 10.1016/j.mineng.2022.107707 |
[27] | MARENICH A V, CRAMER C J, TRUHLAR D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. Journal of Physical Chemistry B, 2009, 113(18): 6378−6396. doi: 10.1021/jp810292n |
[28] | ZHANG H, XU Z, SUN W, et al. Selective adsorption mechanism of dodecylamine on the hydrated surface of hematite and quartz[J]. Separation and Purification Technology, 2021, 275: 119137. doi: 10.1016/j.seppur.2021.119137 |
X-ray diffraction analysis of pure minerals (a: scheelite; b: calcite)
MLA color map of scheelite and calcite in actual ore
Synthetic reaction of Al-starch
NPA charge distribution of starch monomolecular optimization structure (a: trans-structure; b: Cis-structure)
Optimal model of the chelation of aluminum ions and starch molecules (a1 ~ e1—Al3+−trans starch molecules; a2 ~ e2—Al3+−cis starch molecules)
Change of FTIR characteristic peaks of starch and Al−starch
Flotation behaviors of scheelite and calcite under Pb−BHA collector system
Effect of Al−starch with different mass ratio on scheelite and calcite.
Flowsheet of closed−circuit experiment of Al−starch complexes
Zeta potential of depressants (a), scheelite (b) and calcite (c)
XPS energy spectrum of reagents (a), calcite (b) and scheelite (c)
XPS energy spectrum of Ca2p (a) and O1s (b) on calcite surface
XPS energy spectrum of Ca2p (a) and O1s (b) on scheelite surface