Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 2
Article Contents

LI Xiaohui, REN Zijie, GAO Huimin, SHEN Yanxu, LIU Zhi, SONG Yuhan. Experimental Study on Mineral Processing and Purification of a Quartzite Ore in Gansu[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 93-98. doi: 10.13779/j.cnki.issn1001-0076.2023.02.014
Citation: LI Xiaohui, REN Zijie, GAO Huimin, SHEN Yanxu, LIU Zhi, SONG Yuhan. Experimental Study on Mineral Processing and Purification of a Quartzite Ore in Gansu[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 93-98. doi: 10.13779/j.cnki.issn1001-0076.2023.02.014

Experimental Study on Mineral Processing and Purification of a Quartzite Ore in Gansu

More Information
  • The beneficiation experiments of a quartzite ore in Gansu province were carried out. Based on the process mineralogy study of the raw ore, the different technological processes such as magnetic separation, scrubbing and flotation on the removal of iron impurities in quartzite ore were studied. The purification effect of "magnetic separation-scrubbing" and "magnetic separation-flotation" process was compared. The results showed that the process of "grinding-magnetic separation-flotation" was more conducive to purification for the quartzite ore with SiO2 of 99.42%, Al2O3 of 2 400 μg/g and Fe2O3 of 1 814 μg/g. After iron ball milling, the sample was subject to three-stage magnetic separation to remove iron under the magnetic induction intensity of 1.4 T. Then the reverse flotation test was carried out with H2SO4 as the regulator, pine oil as frother and PSK-78 sodium petroleum sulfonate as the collector. Finally, the quartz concentrate with SiO2 content of 99.61%, Fe2O3 content of 185 μg/g and recovery of 51.34% was obtained. The process has remarkable iron removal effect and little pollution, and it can greatly improve the added value of products and has a good application prospect.

  • 加载中
  • [1] 汪灵. 石英的矿床工业类型与应用特点[J]. 矿产保护与利用, 2019, 39(6): 39−47.

    Google Scholar

    WANG L. Industrial types and application characteristics of quartz deposit[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 39−47.

    Google Scholar

    [2] 周鹏, 高惠民, 任子杰. 湖北某石英矿提纯试验研究[J]. 金属矿山, 2018(12): 104−108.

    Google Scholar

    ZHOU P, GAO H M, REN Z J. Experimental study on purification of a quartz ore in Hubei Province[J]. Metal Mine, 2018(12): 104−108.

    Google Scholar

    [3] 徐凯. 硅砂质量对玻璃生产的影响[J]. 江苏建材, 2001(4): 13−15. doi: 10.3969/j.issn.1004-5538.2001.04.006

    CrossRef Google Scholar

    XU K. Influence of silica sand quality on glass production[J]. Jiangsu Building Materials, 2001(4): 13−15. doi: 10.3969/j.issn.1004-5538.2001.04.006

    CrossRef Google Scholar

    [4] 杨涛, 蒋述兴. 高纯超细电子级石英粉的制备技术综述[J]. 化工矿产地质, 2006(3): 185−188. doi: 10.3969/j.issn.1006-5296.2006.03.010

    CrossRef Google Scholar

    YANG T, JIANG S X. Review on preparation technology of high purity and ultrafine electronic grade quartz powder[J]. Chemical and Mineral Geology, 2006(3): 185−188. doi: 10.3969/j.issn.1006-5296.2006.03.010

    CrossRef Google Scholar

    [5] 高惠民, 张凌燕, 管俊芳, 等. 石墨、石英、萤石选矿提纯技术进展[J]. 金属矿山, 2020(10): 58−69. doi: 10.19614/j.cnki.jsks.202010006

    CrossRef Google Scholar

    GAO H M, ZHANG L Y, GUAN J F, et al. Progress of beneficiation purification technology of graphite, quartz and fluorite[J]. Metal Mine, 2020(10): 58−69. doi: 10.19614/j.cnki.jsks.202010006

    CrossRef Google Scholar

    [6] 刘治. 河源断裂带石英岩矿成矿地质特征[J]. 能源与环保, 2021, 43(7): 137−139.

    Google Scholar

    LIU Z. Metallogenic geological characteristics of quartzite deposit in Heyuan fault zone[J]. Energy and Environmental Protection, 2021, 43(7): 137−139.

    Google Scholar

    [7] NOURI S, HOSEINIAN F S, REZAI B, et al. New pretreatment method for high-tension electrical separation of zircon from quartz[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(8): 1737−1743. doi: 10.1016/S1003-6326(19)65081-8

    CrossRef Google Scholar

    [8] XIE R, ZHU Y, LIU J, et al. A self-assembly mixed collector system and the mechanism for the flotation separation of spodumene from feldspar and quartz[J]. Minerals Engineering, 2021, 171: 107082. doi: 10.1016/j.mineng.2021.107082

    CrossRef Google Scholar

    [9] SEKULIć, CANIć N, BARTULOVIć Z, et al. Application of different collectors in the flotation concentration of feldspar, mica and quartz sand[J]. Minerals Engineering, 2004, 17(1): 77−80. doi: 10.1016/j.mineng.2003.10.004

    CrossRef Google Scholar

    [10] WEI Q, FENG L, DONG L, et al. Selective co-adsorption mechanism of a new mixed collector on the flotation separation of lepidolite from quartz[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612: 125973. doi: 10.1016/j.colsurfa.2020.125973

    CrossRef Google Scholar

    [11] 范培强, 谢贤, 宋强, 等. 国内高纯石英砂选矿与深加工研究现状[J]. 矿冶, 2018, 27(3): 18−22. doi: 10.3969/j.issn.1005-7854.2018.03.004

    CrossRef Google Scholar

    FAN P Q, XIE X, SONG Q, et al. Research status of mineral processing and deep processing of high purity quartz sand in China[J]. Mining and Metallurgy, 2018, 27(3): 18−22. doi: 10.3969/j.issn.1005-7854.2018.03.004

    CrossRef Google Scholar

    [12] 李爱民. 我国石英与长石浮选分离的研究进展[J]. 矿产保护与利用, 2021, 41(6): 27−34.

    Google Scholar

    LI A M. Research progress of flotation separation of quartz and feldspar in China[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 27−34.

    Google Scholar

    [13] 于福顺, 邵怀志, 蒋曼, 等. 长石石英浮选分离试验及混合捕收剂作用机理研究[J]. 矿业研究与开发, 2020, 40(12): 122−127.

    Google Scholar

    YU F S, SHAO H Z, JIANG M, et al. Flotation separation test of feldspar quartz and study on action mechanism of mixed collector[J]. Mining Research and Development, 2020, 40(12): 122−127.

    Google Scholar

    [14] 颜玲亚, 刘艳飞, 于海军, 等. 中国高纯石英资源开发利用现状及供需形势[J]. 国土资源情报, 2020(10): 98−103.

    Google Scholar

    YAN L Y, LIU Y F, YU H J, et al. Development and utilization of high-purity quartz resources in China and its supply-demand situation[J]. Land and Resources Information, 2020(10): 98−103.

    Google Scholar

    [15] 詹建华, 王依, 陈正国, 等. 我国脉石英资源现状分析[J]. 中国非金属矿工业导刊, 2020(5): 1−4. doi: 10.3969/j.issn.1007-9386.2020.05.002

    CrossRef Google Scholar

    ZHAN J H, WANG Y, CHEN Z G, et al. Analysis of pulsar resources in China[J]. China Non-Metallic Mineral Industry Guide, 2020(5): 1−4. doi: 10.3969/j.issn.1007-9386.2020.05.002

    CrossRef Google Scholar

    [16] 岳丽琴. 高纯石英制备技术评述[J]. 矿产综合利用, 2014(1): 16−19. doi: 10.3969/j.issn.1000-6532.2014.01.004

    CrossRef Google Scholar

    YUE L Q. Review on preparation technology of high purity quartz[J]. Comprehensive Utilization of Mineral Resources, 2014(1): 16−19. doi: 10.3969/j.issn.1000-6532.2014.01.004

    CrossRef Google Scholar

    [17] 文贵强, 靳小涛, 李勇, 等. 汉中地区某石英岩矿提纯工艺研究[J]. 建材世界, 2016, 37(5): 30−34. doi: 10.3963/j.issn.1674-6066.2016.05.009

    CrossRef Google Scholar

    WEN G Q, JIN X T, LI Y, et al. Study on purification technology of quartzite ore in Hanzhong area[J]. Building Materials World, 2016, 37(5): 30−34. doi: 10.3963/j.issn.1674-6066.2016.05.009

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views(72) PDF downloads(11) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint