Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 2
Article Contents

ZHAO Xin, PENG Xiangyu, WANG Yubin, TIAN Jiayi, HUA Kaiqiang, GUI Wanting. Mechanism Analysis of Ultrasonic Pretreatment of Calcium Oxide to Improve Chalcopyrite Flotation[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 87-92. doi: 10.13779/j.cnki.issn1001-0076.2023.02.013
Citation: ZHAO Xin, PENG Xiangyu, WANG Yubin, TIAN Jiayi, HUA Kaiqiang, GUI Wanting. Mechanism Analysis of Ultrasonic Pretreatment of Calcium Oxide to Improve Chalcopyrite Flotation[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 87-92. doi: 10.13779/j.cnki.issn1001-0076.2023.02.013

Mechanism Analysis of Ultrasonic Pretreatment of Calcium Oxide to Improve Chalcopyrite Flotation

More Information
  • To reveal the mechanism of ultrasonic pretreatment of calcium oxide to improve the flotation effect of chalcopyrite, the flotation of chalcopyrite was carried out with ultrasonic pretreatment of calcium oxide as the regulator. The ultrasonic pretreated calcium oxide solution was characterized by FTIR. The results revealed that the calcium oxide solution suitable for ultrasonic power treatment had obvious influence on the efficiency of chalcopyrite flotation. After 500 g/t calcium oxide was treated by ultrasonic wave with 216 W output power, the recovery of copper in concentrate reached 83.23%, which was 9.48% higher than that without treatment. Appropriate ultrasonic treatment of calcium oxide solution could increase the content of Ca2+, Ca(OH)+ and OH-, and the Ca2+ and Ca(OH)+ plasma could reduce the consumption of flotation agent. In addition, the appropriate ultrasonic power pretreatment could also increase the content of hydroxyl group in free water in calcium oxide solution which was conducive to the flotation of chalcopyrite by 3.13%, so as to improve the flotation effect of chalcopyrite. The research provides a reference for the application of ultrasonic technology in flotation field.

  • 加载中
  • [1] 王李鹏, 叶雪均, 江皇义. 被石灰抑制的黄铁矿活化浮选技术进展[J]. 有色金属科学与工程, 2011, 2(4): 67−70.

    Google Scholar

    WANG L P, YE X J, JIANG H Y. Activation flotation technology advances of lime-suppressed pyrite[J]. Nonferrous Metals Science and Engineering, 2011, 2(4): 67−70.

    Google Scholar

    [2] 杨子轩, 谢贤, 童雄, 等. 石灰在浮选过程中的作用[J]. 矿产综合利用, 2015(2): 17−21.

    Google Scholar

    YANG Z X, XIE X, TONG X, et al. Research on the effect of lime in flotation process[J]. Multipurpose Utilization of Mineral Resources, 2015(2): 17−21.

    Google Scholar

    [3] 赵春艳. 某多金属选厂废水循环利用研究及生产实践[J]. 矿产保护与利用, 2015(1): 59−62.

    Google Scholar

    ZHAO C Y. Production practice and research on wastewater recycling of a polymetallio concentrator[J]. Conservation and Utilization of Mineral Resources, 2015(1): 59−62.

    Google Scholar

    [4] 柏中能, 王朝霞. 磷矿浮选回水利用研究与建议[J]. 云南化工, 2009, 36(2): 18−21.

    Google Scholar

    BAI Z N, WANG Z X. Suggestion on the use of backwater in phosphate floatation[J]. Yunnan Chemical Technology, 2009, 36(2): 18−21.

    Google Scholar

    [5] CILEK E C, OZGEN S. Improvement of the flotation selectivity in a mechanical flotation cell by ultrasound[J]. Separation Science and Technology, 2010, 45(4): 572−579. doi: 10.1080/01496390903484966

    CrossRef Google Scholar

    [6] 王阳恩, 凌向虎, 尚志远, 等. 超声波对表面活性剂水溶液表面张力的影响[J]. 中国海上油气(工程), 2001(6): 36−38+5.

    Google Scholar

    WANG Y E, LING X H, SHANG Z Y, et al. Ultrasonic effect on surface tension of surfactant solution[J]. China Offshore Oil and Gas (Engineering), 2001(6): 36−38+5.

    Google Scholar

    [7] 王成会, 林书玉. 超声空化效应对溶液电导率的影响[J]. 声学技术, 2006(4): 309−312. doi: 10.3969/j.issn.1000-3630.2006.04.008

    CrossRef Google Scholar

    WANG C H, LIN S Y. Impact of ultrasonic cavitation upon electrical conductivity of solution[J]. Technical Acoustics, 2006(4): 309−312. doi: 10.3969/j.issn.1000-3630.2006.04.008

    CrossRef Google Scholar

    [8] 胡松青, 李琳, 郭祀远, 等. 功率超声对溶液性质的影响[J]. 应用声学, 2003(1): 26−30.

    Google Scholar

    HU S Q, LI L, GUO S Y, et al. Effect of power ultrasound on some properties of several solution[J]. Applied Acoustics, 2003(1): 26−30.

    Google Scholar

    [9] 薛娟琴, 吴川眉. 超声波对溶液性质的影响[J]. 金属世界, 2008(1): 25−28. doi: 10.3969/j.issn.1000-6826.2008.01.009

    CrossRef Google Scholar

    XUE J Q, WU C M. Influence of ultrasonic wave on the properties of several solution[J]. Metal World, 2008(1): 25−28. doi: 10.3969/j.issn.1000-6826.2008.01.009

    CrossRef Google Scholar

    [10] 卜祥宁, 陈昱冉, 倪超, 等. 超声波强化低阶煤浮选研究现状及展望[J]. 矿产保护与利用, 2022, 42(1): 97−105.

    Google Scholar

    BU X N, CHEN Y R, NI C, et al. Ultrasound-assisted flotation of low-rank coal: a review of the current status[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 97−105.

    Google Scholar

    [11] 邹玉超, 王磊, 李国胜. 矿物浮选矿浆相流变学研究进展[J]. 金属矿山, 2021 (8): 102-108.

    Google Scholar

    ZOU Y C, WANG L, LI G S. Pulp rheology in mineral flotation: a review[J]. Metal Mine, 2021 (8): 102-108.

    Google Scholar

    [12] 刘欣萍. 超细氢氧化钙粉体的原位表面改性研究[J]. 化工矿物与加工, 2009, 38(1): 16−19. doi: 10.3969/j.issn.1008-7524.2009.01.005

    CrossRef Google Scholar

    LIU X P. Study on surface modification of ultrafine calcium hydroxide powder[J]. Industrial Minerals & Processing, 2009, 38(1): 16−19. doi: 10.3969/j.issn.1008-7524.2009.01.005

    CrossRef Google Scholar

    [13] 华开强, 王宇斌, 王妍, 等. 超声波改性强化氧化钙在黄铜矿粗选中的作用及其机理[J]. 有色金属工程, 2022, 12(4): 84−90.

    Google Scholar

    HUA K Q, WANG Y B, WANG Y, et al. The strengthening mechanism of calcium oxide modified by ultrasonic in chalcopyrite roughing[J]. Nonferrous Metals Engineering, 2022, 12(4): 84−90.

    Google Scholar

    [14] 郗悦, 代淑娟, 张作金. Ca2+对菱镁矿浮选行为的影响[J]. 金属矿山, 2019(9): 98−101.

    Google Scholar

    XI Y, DAI S J, ZHANG Z J. Effect of Ca2+ on flotation behavior of magnesite[J]. Metal Mine, 2019(9): 98−101.

    Google Scholar

    [15] 丁绍兰, 曹凯, 董凌霄. 石灰调理对污泥脱水性能的影响[J]. 陕西科技大学学报, 2015, 33(4): 23−27+36. doi: 10.3969/j.issn.1000-5811.2015.04.005

    CrossRef Google Scholar

    DING S L, CAO K, DONG L X. The influence of lime regulate on the dewaterability of sewage sludge[J]. Journal of Shaanxi University of Science, 2015, 33(4): 23−27+36. doi: 10.3969/j.issn.1000-5811.2015.04.005

    CrossRef Google Scholar

    [16] 金波. 矿泥对氯化钾矿物浮选影响的研究[J]. 盐科学与化工, 2021, 50(3): 27−28+32.

    Google Scholar

    JIN B. Effect of slime on flotation of potassium chloride mineral[J]. Journal of Salt Science and Chemical Industry, 2021, 50(3): 27−28+32.

    Google Scholar

    [17] 卫召, 孙伟, 张庆鹏, 等. 细粒硫化铜矿与易泥化钙镁矿物的浮选分离[J]. 有色金属工程, 2017, 7(4): 64−69.

    Google Scholar

    WEI Z, SUN W, ZHANG Q P, et al. Flotation separation of fine copper sulfide and easy-sliming calcium-magnesium minerals[J]. Nonferrous Metals Engineering, 2017, 7(4): 64−69.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(332) PDF downloads(7) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint