Citation: | HOU Sanya, HUANG Jiahao, Zhang Dou, CHEN Jing, HU Qiansheng, LUO Jun, RAO Mingjun. Effect of MgO/Al2O3 Mass Ratio on Mineralization Behavior of Limonitic Laterite Ore During Sintering[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 140-147. doi: 10.13779/j.cnki.issn1001-0076.2023.01.015 |
To improve the production and quality indices of laterite ore sinter, the effect of MgO/Al2O3 mass ratio on the liquid volume and viscosity during high-temperature sintering was investigated, based on thermodynamic analysis. The influence of MgO/Al2O3 ratio on the phase composition and bonding phase strength of sinter was discussed through micro-sintering test, and the impact of MgO/Al2O3 mass ratio on sintering mineralization behavior of limonitic laterite ore was clarified. Finally, the validity of our findings was confirmed through sinter-pot large-scale sintering test. The results of micro-sintering test showed that the bond phase was mainly composed of calc-magnesia melilite and olivine and their compressive strength exceeded 4 000 N/P, under the condition of m(MgO)/m(Al2O3)=0.5~0.8, sintering temperature of 1 300 ℃, sintering atmosphere of 5%CO+95%N2, binary basicity of m(CaO)/m(SiO2)=1.3. The sinter-pot verification test revealed that increasing the MgO/Al2O3 mass ratio from 0.5 to 0.7, the yield of sinter did not change significantly and remained at approximately 70%, but its tumbling strength of sinter increased from 49.73% to 56.67%, and the optimal MgO/Al2O3 mass ratio was in the range of 0.6-0.7.
[1] | 党晓娥, 谭金滔, 卢苏君. 低品位褐铁矿型红土镍矿资源化利用与新技术研发现状[J]. 有色金属(冶炼部分), 2022(4): 12−20. DANG X E, TAN J T, LU S J, et al. Resource utilization and new technology development of low grade limonite laterite nickel ore[J]. Non-ferrous metals (smelting part), 2022(4): 12−20. |
[2] | 李光辉, 姜涛, 罗骏, 等. 红土镍矿冶炼镍铁新技术: 原理与应用[M]. 北京: 冶金工业出版社, 2018: 1-5. LI G H, JIANG T, LUO J, et. al. New technologies for marking ferronickel from laterite ores: principles and applications [M]. Beijing: Metallurgical Industry Press, 2018: 1-5. |
[3] | 杨志强, 王永前, 高谦, 等. 中国镍资源开发现状与可持续发展策略及其关键技术[J]. 矿产保护与利用, 2016(2): 58−69. YANG Z Q, WANG Y Q, GAO Q, et al. Present situation and development strategy and key technologies of China’s nickel resources sustainable development[J]. Conservation and Utilization of Mineral Resources, 2016(2): 58−69. |
[4] | ZHANG J, GAO L, HE Z, et al. Separation and recovery of iron and nickel from low-grade laterite nickel ore by microwave carbothermic reduction roasting[J]. Journal of Materials Research and Technology, 2020, 9(6): 12223−12235. doi: 10.1016/j.jmrt.2020.08.036 |
[5] | 薛钰霄, 潘建, 朱德庆, 等. 红土镍矿烧结节能降耗技术研究及应用[J]. 中国冶金, 2021, 31(9): 92−97. XUE Y X, PAN J, ZHU D Q, et al. Research and application on energy saving and consumption reduction technology of lateritic nickel ore sintering[J]. China Metallurgy, 2021, 31(9): 92−97. |
[6] | 刘云峰, 陈滨. 红土镍矿资源现状及其冶炼工艺的研究进展[J]. 矿冶, 2014, 23(4): 70−75+78. LIU Y F, CHEN B. The current status of laterite nickel ore resources andadvance in its processing technology[J]. Mining& Metallurgy, 2014, 23(4): 70−75+78. |
[7] | ZHU D, XUE Y, PAN J, et al. An investigation into the distinctive sintering performance and consolidation mechanism of limonitic laterite ore[J]. Powder Technol, 2020, 367: 616−631. doi: 10.1016/j.powtec.2020.03.066 |
[8] | TU Y K, ZHANG Y B, SU Z J, et al. Mineralization mechanism of limonitic laterite sinter under different fuel dosage: Effect of FeO[J]. Powder Technol, 2021, 198: 117064. |
[9] | 郭恩光. 褐铁矿型红土镍矿烧结行为研究及工艺优化[D]. 重庆: 重庆大学, 2014. GUO E G. Sintering behaviour and process optimization of nickel laterite based of limonitic style[D]. Chongqing: Chongqing University, 2014. |
[10] | KESKINKILIC E. Nickel laterite smelting processes and some examples of recent possible modifications to the conventional route[J]. METALS, 2019, 9(9): 974. doi: 10.3390/met9090974 |
[11] | XUE Y, ZHU D, PAN J, et al. Promoting the effective utilization of limonitic nickel laterite by the optimization of (MgO+Al2O3)/SiO2 mass ratio during sintering[J]. ISIJ International, 2022, 62(3): 457−464. doi: 10.2355/isijinternational.ISIJINT-2021-362 |
[12] | LI H P, WU S L, HONG Z B, et al. The mechanism of the effect of Al2O3 content on the liquid phase fluidity of iron ore fines[J]. Processes, 2019, 7(12): .931. doi: 10.3390/pr7120931 |
[13] | CHAI Y F, YU W T, ZHANG J L, et al. Influencing mechanism of Al2O3 on sintered liquid phase of iron ore fines based on thermal and kinetic analysis[J]. Ironmaking & Steelmaking, 2019, 46(5): 424−430. |
[14] | JI, ZHAO, GAN, et al. Microstructure and Minerals Evolution of Iron Ore Sinter: Influence of SiO2 and Al2O3[J]. Minerals, 2019, 9(7): 449. doi: 10.3390/min9070449 |
[15] | 王喆, 张建良, 左海滨, 等. MgO/Al2O3比对烧结矿矿物组成及冶金性能的影响[J]. 烧结球团, 2013, 38(5): 1−5. WANG Z, ZHANG J L, ZUO H B, et. al. Influence of MgO/Al2O3 ratio on sinter mineral composition and metallurgical properties[J]. Sintering and Pelletizing, 2013, 38(5): 1−5. |
[16] | 胡长庆, 张国柱, 崔利民. MgO/Al2O3比对铁矿粉烧结液相生成的影响[J]. 烧结球团, 2016, 41(5): 19−23. HU C Q, ZHANG G Z, CUI L M, et. al. Influence of MgO/Al2O3 ratio on liquid phase generation during iron ore sintering[J]. Sintering and Pelletizing, 2016, 41(5): 19−23. |
[17] | 胡长庆, 闫龙飞, 张国柱, 等. MgO/Al2O3对复合铁酸钙显微形貌和显微硬度的影响[J]. 烧结球团, 2018, 43(2): 14−20. HU C Q, YAN F L, ZHANG G Z, et. al. Effect of MgO/Al2O3 on microscopic structure and micro-hardness of silico-ferrite of calcium and aluminum ( SFCA)[J]. Sintering and Pelletizing, 2018, 43(2): 14−20. |
[18] | 龙明华, 张东升, 肖扬武, 等. MgO /Al2O3 比值对高炉炉渣流动性和结构的影响[J]. 重庆理工大学学报( 自然科学), 2015, 29(7): 49−53. LONG M H, ZHANG D S, XIAO Y W, et al. Effect of MgO/ Al2O3 on fluidity and structure of blast furnace slag[J]. Journal of Chongqing University of Technology:Natural Science, 2015, 29(7): 49−53. |
[19] | ORIMOTO T, NODA T, ICHIDA M, et al. Desulfurization technology in the blast furnace raceway by MgO–SiO2 flux injection[J]. ISIJ International, 2008, 48(2): 141−146. doi: 10.2355/isijinternational.48.141 |
[20] | 胡长庆, 闫龙飞, 张国柱, 等. MgO/Al2O3对复合铁酸钙润湿性和黏度的影响[J]. 烧结球团, 2018, 43(1): 6−9+14. HU C Q, YAN F L, ZHANG G Z, et al. Effect of MgO/Al2O3 on wettability and viscosity of SFCA[J]. Sintering and Pelletizing, 2018, 43(1): 6−9+14. |
Effect of MgO/Al2O3 mass ratio on generated amount of liquid phase
Effect of MgO/Al2O3 mass ratio on liquid viscosity
X-ray diffraction analysis of roasting products at different MgO/Al2O3 mass ratio
Effect of MgO/Al2O3 mass ratio on the strength of the bonded phase of sinter
Microstructure of sinter under different MgO/Al2O3 mass ratios
Effect of different MgO/Al2O3 mass ratios on sinter yield and tumbler strength
X-ray diffraction analysis of sinter at MgO/Al2O3 mass ratio of 0.7
Microstructure of sinter at MgO/Al2O3 mass ratio of 0.7((a), (b), (c): 50X sinter phase diagram; (d), (e), (f): 500X pictures of different areas of sinter mineral phases, (g), (h), (i): 200X, 500X, 1000X sinter internal ore phase pictures respectively)
SEM-EDS pattern of sinter at MgO/Al2O3 mass ratio of 0.7