Citation: | WANG Wei, YANG Xingchen, LIU Lin, LIU Hongzhao, WANG Hongliang, CAO Yaohua. Research on Leaching Lithium and Manganese from Waste Lithium Manganate Battery Cathode Materials with Deep Eutectic Solvent[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 128-131. doi: 10.13779/j.cnki.issn1001-0076.2023.01.013 |
As a green solvent, the deep eutectic solvent has attracted increasing attention in the field of recycling valuable components of waste lithium batteries. In this paper, the waste lithium manganate battery cathode powder was taken as the object for lithium and manganese leaching using deep eutectic solvent of guanidine hydrochloride and lactic acid. The effects of leaching temperature, leaching liquid solid ratio and leaching time on the leaching rate of lithium and manganese were investigated. The results showed that the appropriate dissolution conditions were as follows: using deep eutectic solvent with the mole ratio of guanidine hydrochloride to lactic acid 1∶2, the volume mass ratio of leaching solution to solid was 10 mL/g, the dissolution temperature was 70 ℃, and the leaching time was 1 h. Under the appropriate dissolution conditions, the leaching rate of lithium and manganese in lithium manganate cathode powder reached to 99.27% and 99.20% respectively.
[1] | 徐正震, 梁精龙, 李慧, 等. 废旧锂电池正极材料中有价金属的回收工艺研究进展[J]. 矿产综合利用, 2022(1): 119−122. XU Z Z, LIANG J L, LI H, et al. Research progress of recovery process of valuable metals in cathode materials of waste lithium batteries[J]. Multipurpose Utilization of Mineral Resources, 2022(1): 119−122. |
[2] | 李金龙, 何亚群, 付元鹏, 等. 废弃锂离子电池正极材料酸浸出实验研究[J]. 矿产综合利用, 2020(2): 128. doi: 10.3969/j.issn.1000-6532.2020.02.023 LI J L, HE Y Q, FU Y P, et al. Study on leaching cathode materials of spent lithium-ion batteries[J]. Multipurpose Utilization of Mineral Resources, 2020(2): 128. doi: 10.3969/j.issn.1000-6532.2020.02.023 |
[3] | 邱宏菊, 郝先东, 张艳琼, 等. 微波辅助废旧锂电池正极材料有价金属回收技术进展[J]. 矿产保护与利用, 2022, 42(3): 38−44. QIU H J, HAO X D, ZHANG Y Q, et. al. Progress in microwave-assisted recovery of valuable metals from spent lithium battery cathode materials[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 38−44. |
[4] | 胡国荣, 杜柯, 彭忠东. 锂离子电池正极材料: 原理、性能与生产工艺[M]. 北京: 化学工业出版社, 2017: 10. HU G R, DU K, PENG Z D. Cathode materials for lithium ion batteries : Principle, properties and production process[M]. Beijing : Chemical Industry Press, 2017: 10. |
[5] | TANG X C, HUANG B Y, HE Y H. Phase transition of lithiated-spinel LiMn2O4 at high temperature[J]. Trans Nonferrous Met Soc China, 200, 16(9): 438-444. |
[6] | LISBONA D, SNEE T. A review of hazards associated with primary lithium and lithium-ion batteries[J]. Process Saf Environ, 2011, 89(6): 434−442. doi: 10.1016/j.psep.2011.06.022 |
[7] | 江泉. 电动汽车锰酸锂电池中锰的回收和处理研究[J]. 中国锰业, 2016, 34(6): 148−152. JIANG Q. Recovery and treatment of manganese in lithium battery from electric vehicles[J]. China's Manganese Industry, 2016, 34(6): 148−152. |
[8] | 刘银玲, 赵璐璐, 郭琳娜, 等. 维生素C溶解废旧锂离子电池正极材料锰酸锂的研究[J]. 南阳师范学院学报, 2015, 14(9): 27−31. doi: 10.3969/j.issn.1671-6132.2015.09.008 LIU Y L, ZHAO L L, GUO L N, et. al. Research on the dissolution conditions of waste lithium-ion battery anode material LiMn2O4 in vitamin C[J]. Journal of Nanyang Normal University, 2015, 14(9): 27−31. doi: 10.3969/j.issn.1671-6132.2015.09.008 |
[9] | COBY J, TU W C, OLIVER L, et. al. Green and Sustainable Solvents in Chemical Processes[J]. Chem. Rev. 2018, 118, 747-800. |
[10] | ABBOTT A P, BOOTHBY D, CAPPER G, et al. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids[J]. Journal of the American Chemical Society, 2004, 126(29): 9142−9147. doi: 10.1021/ja048266j |
[11] | 成洪业, 漆志文. 低共熔溶剂用于萃取分离的研究进展[J]. 化工进展, 2020, 39(12): 4896−4907. CHENG H Y, QI Z W. Research progress of deep eutectic solvent for extractive separation[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4896−4907. |
[12] | 程明强, 汝娟坚, 华一新, 等. 低共熔溶剂在废旧锂离子电池正极材料回收中的研究进展[J]. 化工进展, 2022, 41(6): 3293−3305. CHENG M Q, RU J J, HUA Y X, et. al. Progress of deep eutectic solvents in recovery of cathode materials from spent lithium ion batteries[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3293−3305. |
[13] | TRAN M K, RODRIGUES M T F, KATO K, et al. Deep eutectic solvents for cathode recycling of Li-ion batteries[J]. Nature Energy, 2019, 4(4): 339−345. doi: 10.1038/s41560-019-0368-4 |
[14] | ROLDÁN-RUIZ M J, FERRER M L, GUTIÉRREZ M C, et al. Highly efficient p-toluenesulfonic acid-based deep-eutectic solvents for cathode recycling of Li-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(14): 5437−5445. |
[15] | XU Z W, SHAO H S, ZHAO Q X, et. al. Use of Microwave-Assisted Deep Eutectic Solvents to Recycle Lithium Manganese Oxide from Li-Ion Batteries[J]. The Minerals, Metals & Materials Society, 2021, 73(7): 2104−2110. |
[16] | LIU C Y, YAN Q B, ZHANG X W, et. al. Efficient Recovery of End-of-Life NdFeB Permanent Magnets by Selective Leaching with Deep Eutectic Solvents[J]. Environ. Sci. Technol. 2020, 54, 1037: 0−10379. |
[17] | YUE D Y, JIA Y Z, YAO Y, et al. Structure and electrochemical behavior of ionic liquid analogue based on choline chloride and urea[J]. Electrochimica Acta, 2012, 65: 30−36. doi: 10.1016/j.electacta.2012.01.003 |
[18] | WANG S B, ZHANG Z T, LU Z G, et al. A novel method for screening deep eutectic solvent to recycle the cathode of Li-ion batteries[J]. Green Chemistry, 2020, 22(14): 4473−4482. doi: 10.1039/D0GC00701C |
Effect of leaching liquid solid ratio on leaching rate of lithium and manganese
Effect of leaching temperature on leaching rate of lithium and manganese
Effect of leaching time on leaching rate of lithium and manganese