Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 1
Article Contents

XIE Haosong, XIAO Qingfei, ZHANG Zhipeng, REN Yingdong. Optimization of Steel Ball Size and Discrete Element Simulation Analysis of a Semi-autogenous Grinding Gold Mine in Yunnan[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 57-65. doi: 10.13779/j.cnki.issn1001-0076.2023.01.006
Citation: XIE Haosong, XIAO Qingfei, ZHANG Zhipeng, REN Yingdong. Optimization of Steel Ball Size and Discrete Element Simulation Analysis of a Semi-autogenous Grinding Gold Mine in Yunnan[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 57-65. doi: 10.13779/j.cnki.issn1001-0076.2023.01.006

Optimization of Steel Ball Size and Discrete Element Simulation Analysis of a Semi-autogenous Grinding Gold Mine in Yunnan

More Information
  • To address the problem of the serious accumulation of hard rock (-80+25 mm) in semi-autogenous grinding mill of a gold mine in Yunnan, The theoretical optimum size of steel ball was calculated by Duan's semi-theoretical formula of ball diameter which was based on the determination of mechanical properties and particle size of ore feed. The grinding cycle test was carried out with the steel ball size as a single variable, and grinding effect was verified by discrete element simulation analysis. The results showed that the average platts hardness of the ore is relatively large, which is medium to hard, and there are relatively large brittleness and toughness at the same time. The recommended Φ140 mm scheme had the lowest tendency to accumulate hard rock during the grinding cycle test. After 4 cycles, the hard rock yield was the lowest at 3.89%, 3.50 percentage points lower than the on-site Φ120 mm scheme, while the −2 mm pass grade and −0.074 mm grade yield were the highest, 8.40 and 3.15 percentage points higher than the on-site Φ120 mm scheme respectively. The recommended Φ140mm scheme was more active than the on-site Φ120 mm scheme in terms of hard rock particle motion, more reasonable collision energy distribution, and higher energy consumption and frequency of high-energy collision for single collision of hard rock by the media. The effectiveness of the recommended Φ140 mm scheme for semi-autogenous grinding to reduce hard rock accumulation was verified from grinding tests and discrete element simulation tests.

  • 加载中
  • [1] 段希祥, 肖庆飞. 碎矿与磨矿[M]. 北京: 冶金工业出版社, 2012.

    Google Scholar

    DUAN X X, XIAO Q F. Ore crushing and grinding [M]. Beijing: Metallurgical Industry Press, 2012.8

    Google Scholar

    [2] 黄治国, 方启学, 任翔, 等. 全自磨半自磨磨矿技术[M]. 北京: 冶金工业出版社, 2018

    Google Scholar

    HUANG Z G, FANG Q X, REN X et al. Full autogenous grinding and semi-autogenous grinding technology [M]. Beijing: Metallurgical Industry Press, 2018.

    Google Scholar

    [3] 宗路, 李旭, 蔡改贫, 等. 基于响应曲面法的半自磨机磨矿能耗研究[J]. 化工矿物与加工, 2018, 47(4): 18−21+53. doi: 10.16283/j.cnki.hgkwyjg.2018.04.006

    CrossRef Google Scholar

    ZONG L, LI X, CAI G P, et al. Study on energy consumption of semi-autogenous mill grinding based on response surface method[J]. Chemical Minerals and Processing, 2018, 47(4): 18−21+53. doi: 10.16283/j.cnki.hgkwyjg.2018.04.006

    CrossRef Google Scholar

    [4] 尹自信. 球磨机铁矿石颗粒破碎及粒度分布行为研究[D]. 徐州: 中国矿业大学, 2020.

    Google Scholar

    YIN Z X. Study of iron ore particle crushing and particle size distribution behavior in ball mill[D]. Xuzhou: China University of Mining and Technology, 2020.

    Google Scholar

    [5] 赵元, 马华庆, 赵永志. 研磨介质形状对球磨机特性影响的DEM模拟研究[J]. 矿山机械, 2020, 48(5): 38−45.

    Google Scholar

    ZHAO Y, MA H Q, ZHAO Y Z. DEM simulation study on the effect of grinding media shape on ball mill characteristics[J]. Mining Machinery, 2020, 48(5): 38−45.

    Google Scholar

    [6] YU X P, XU N, ZHEN C Z, et al. Friction and wear of liner and grinding ball in iron ore ball mill[J]. Tribology International, 2017, 115: 506-517.

    Google Scholar

    [7] CLEARY P W, DELANEY G W, SINNOTT M D, et al. Inclusion of incremental damage breakage of particles and slurry rheology into a particle scale multiphase model of a SAG mill[J]. Minerals Engineering, 2018, 128: 92−105. doi: 10.1016/j.mineng.2018.08.026

    CrossRef Google Scholar

    [8] CLEARY P W, MORRISON R D, DELANEY G W. Incremental damage and particle size reduction in a pilot SAG mill: DEM breakage method extension and validation[J]. Minerals Engineering, 2018, 128: 56−68. doi: 10.1016/j.mineng.2018.08.021

    CrossRef Google Scholar

    [9] CLEARY P W, MORRISON R D. Understanding fine ore breakage in a laboratory scale ball mill using DEM[J]. Minerals Engineering, 2011, 24: 352−366. doi: 10.1016/j.mineng.2010.12.013

    CrossRef Google Scholar

    [10] 乔文存, 姬建钢, 董节功, 等. 半自磨流程的优化措施研究[J]. 矿山机械, 2014, 42(7): 91−96. doi: 10.16816/j.cnki.ksjx.2014.07.024

    CrossRef Google Scholar

    QIAO W C, JI J G, DONG J G, et al. Research on optimization measures of semi-autogenous grinding process[J]. Mining & Processing Machinery, 2014, 42(7): 91−96. doi: 10.16816/j.cnki.ksjx.2014.07.024

    CrossRef Google Scholar

    [11] WANG M H, YANG R Y, YU A B. DEM investigation of energy distribution and particle breakage in tumbling ball mills[J]. Powder Technology, 2012, 223: 83−91. doi: 10.1016/j.powtec.2011.07.024

    CrossRef Google Scholar

    [12] WEERASEKARA N S, POWELL M S, CLEARY P W, et al. The contribution of DEM to the science of comminution[J]. Powder Technology, 2013, 248: 3−24. doi: 10.1016/j.powtec.2013.05.032

    CrossRef Google Scholar

    [13] 付开进. 大型半自磨机磨矿性能仿真及参数优化[D]. 长春: 吉林大学, 2016.

    Google Scholar

    FU K J. Grinding performance simulation and parameter optimization of large semi-self-grinding mill [D]. Changchun: Jilin University, 2016.

    Google Scholar

    [14] WEERASEKARA N S, LIU L X, POWELL M S. Estimating energy in grinding using DEM modelling[J]. Minerals Engineering, 2016, 85: 23−33. doi: 10.1016/j.mineng.2015.10.013

    CrossRef Google Scholar

    [15] 曲迪, 刘万华, 杨玉巍, 等. 基于离散元的半自磨机运行参数研究[J]. 矿业研究与开发, 2016, 36(2): 96−99. doi: 10.13827/j.cnki.kyyk.2016.02.022

    CrossRef Google Scholar

    QU D, LIU W H, YANG Y W, et al. Research on operation parameters of semi-autogenous mill based on discrete element[J]. Mining Research and Development, 2016, 36(2): 96−99. doi: 10.13827/j.cnki.kyyk.2016.02.022

    CrossRef Google Scholar

    [16] RODRIGUEZ V A, CARVALHO R M D, TAVARES L M. Insights into advanced ball mill modelling through discrete element simulations, Minerals Engineering, 2018, 127: 48-60.

    Google Scholar

    [17] 张谦, 肖庆飞, 王旭东, 等. 改善新疆某铜镍矿半自磨机顽石积累[J]. 过程工程学报, 2020, 20(9): 1089−1096. doi: 10.12034/j.issn.1009-606X.219347

    CrossRef Google Scholar

    ZHANG Q, XIAO Q F, WANG X D, et al. Improvement of refractory rock accumulation in a semi-autocycle mill in Xinjiang[J]. Chinese Journal of Process Engineering, 2020, 20(9): 1089−1096. doi: 10.12034/j.issn.1009-606X.219347

    CrossRef Google Scholar

    [18] 武煜凯, 肖庆飞, 高志勇. 多级配球降低半自磨中顽石积累及改善磨矿效果试验[J]. 稀有金属, 2022, 46(5): 673−680. doi: 10.13373/j.cnki.cjrm.XY20120018

    CrossRef Google Scholar

    WU Y K, XIAO Q F, GAO Z Y. Experimental study on reducing the accumulation of refractory stones in semi-autogenous grinding and improving the grinding effect[J]. Rare Metals, 2022, 46(5): 673−680. doi: 10.13373/j.cnki.cjrm.XY20120018

    CrossRef Google Scholar

    [19] 王肖江. 基于离散元法的武山铜矿半自磨介质优化研究[D]. 昆明: 昆明理工大学, 2017.

    Google Scholar

    WANG X J. Research on medium optimization of semi-autogenous grinding in Wushan opper mine based on discrete element method [D]. Kunming: Kunming University of Science and Technology, 2017.

    Google Scholar

    [20] 王俊. 基于离散单元法的半自磨机工作性能研究[D]. 赣州: 江西理工大学, 2015.

    Google Scholar

    WANG J. Research on performance of semi-autogenous mill based on discrete element method [D]. Ganzhou: Jiangxi University of Science and Technology, 2015.

    Google Scholar

    [21] 何智文. 黄金选矿厂湿式半自磨机磨矿效率提升方法分析与实施[D]. 济南: 山东大学, 2018.

    Google Scholar

    HE Z W. Analysis and implementation of grinding efficiency improvement method of wet semi-autogenous mill in gold concentrator [D]. Jinan: Shandong University, 2018.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Tables(7)

Article Metrics

Article views(312) PDF downloads(23) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint