Citation: | ZHANG Zhipeng, ZHOU Qiang, XIAO Qingfei, XIE Haosong, REN Yingdong. Experimental Study on Optimization of Grinding Medium Ratio in a Copper Mine Based on Grinding Kinetics[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 66-72. doi: 10.13779/j.cnki.issn1001-0076.2022.01.042 |
In view of the problem of ore grinding fineness and intermediate easy-to-separate particle grades yield caused by the mismatch between the grinding medium ratio m(Φ80)∶m(Φ60)=50∶50 and the grinding feed mechanical properties and particle size distribution in a copper mine in Yunnan, the recommended grinding medium ratio m(Φ70)∶m(Φ60)∶m(Φ50)∶m(Φ40)=15∶30∶10∶45 can be obtained based on the grinding kinetics principle. Comparative test results showed that compared with the on-site ratio, in the early stage of grinding (4 min), the yield of material particles larger than 0.3 mm increased by 1.01 percentage points, while the yield of particles in the range of 0.3 to 0.074 mm decreased by 7.88 percentage points. The grinding fineness (less than 0.074 mm) reached 79.85 percentage at 12 min, and the yield of intermediate easy-to-separate particle grade and over-pulverized particle grade were increased by 3.44 and 1.79 percentage points, respectively. Finally, the recommended medium ratio of the grinding media was m(Φ70)∶m(Φ60)∶m(Φ50)∶m(Φ40)=15∶30∶10∶45 for the selection of the beneficiation plant based on the grinding kinetics principle.
[1] | MU Y F, CHENG Y P, PENG Y J. The interaction of grinding media and collector in pyrite flotation at alkaline pH[J]. Minerals Engineering, 2020, 152: 106344. doi: 10.1016/j.mineng.2020.106344 |
[2] | LARSSON S, PÅLSSON B I, PARIAB M, et al. A novel approach for modelling of physical interactions between slurry,grinding media and mill structure in wet stirred media mills[J]. Minerals Engineering, 2020, 148: 106180. doi: 10.1016/j.mineng.2019.106180 |
[3] | DÍAZ E, L VOISIN, KRACHT W, et al. Using advanced mineral characterisation techniques to estimate grinding media consumption at laboratory scale[J]. Minerals Engineering, 2018, 121: 180−188. doi: 10.1016/j.mineng.2018.03.015 |
[4] | 段希祥.碎矿与磨矿(第三版)[M].北京: 冶金工业出版社,2013. DUAN X X. Ore crushing and grinding (3th Edition) [M]. Beijing: Metallurgical Industry Press, 2013. |
[5] | ZHOU W T, HAN Y X, SUN Y S, et al. Multi-scale impact crushing characteristics of polymetallic sulphide ores[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(9): 1929−1938. doi: 10.1016/S1003-6326(19)65100-9 |
[6] | LIU S H, LI Q L, SONG J W. Study on the grinding kinetics of copper tailing powder[J]. Powder Technology, 2018, 330: 105−113. doi: 10.1016/j.powtec.2018.02.025 |
[7] | IWASAKI T, YABUUCHI T, NAKAGAWA H, et al. Scale-up methodology for tumbling ball mill based on impact energy of grinding balls using discrete element analysis[J]. Advanced Powder Technology, 2010, 21(6): 623−629. doi: 10.1016/j.apt.2010.04.008 |
[8] | CURRY J A, ISMAY M J L, JAMESON G J. Mine operating costs and the potential impacts of energy and grinding[J]. Minerals Engineering, 2014, 56: 70−80. doi: 10.1016/j.mineng.2013.10.020 |
[9] | ZHANG X L, HAN Y X, GAO P, et al. Effects of particle size and ferric hydroxo complex produced by different grinding media on the flotation kinetics of pyrite[J]. Powder Technology, 2020, 360: 1028−1036. doi: 10.1016/j.powtec.2019.11.014 |
[10] | NADOLSKI S, KLEIN B, KUMAR A, et al. An energy benchmarking model for mineral comminution[J]. Minerals Engineering, 2014, 65: 178−186. doi: 10.1016/j.mineng.2014.05.026 |
[11] | MATIJASIC G, KURAJICA S. Grinding kinetics of amorphous powder obtained by solgel process[J]. Powder Technology, 2010, 197(3): 165−169. doi: 10.1016/j.powtec.2009.09.010 |
[12] | OZKAN A, YEKELER M, CALKAYA M. Kinetics of wet grinding of zeolite in a steel ball mill in comparison to dry grinding[J]. International Journal of Mineral Processing, 2009, 90(1/2/3/4): 67−73. doi: 10.1016/j.minpro.2008.10.006 |
[13] | RODRÍGUEZ B A, JUAN M, AGUADO M, et al. Transient stateanalysis by simulation in a closed grinding circuit[J]. Minerals Engineering, 2011, 24(5): 473−475. doi: 10.1016/j.mineng.2010.12.005 |
[14] | BAZIN C, OBIANG P. Should the slurry density in a grinding mill be adjusted as a function of grinding media size[J]. Minerals Engineering, 2007, 20(8): 810−815. doi: 10.1016/j.mineng.2007.01.017 |
[15] | FUERSTENAU D W, PHATAK P B, KAPUR P C, et al. Simulation ofthe grinding of coarse/fine(heterogeneous) systems in a ball mill[J]. International Journal of Mineral Processing, 2011, 99(1-4): 32−38. doi: 10.1016/j.minpro.2011.02.003 |
[16] | 段希祥.碎矿与磨矿(第二版)[M].北京: 冶金工业出版社,2006:179-180. DUAN X X. Ore crushing and grinding (2nd Edition) [M]. Beijing: Metallurgical Industry Press, 2006: 179-180. |
[17] | 段希祥. 磨矿动力学参数与磨矿时间的关系研究[J]. 昆明工学院学报, 1988, 13(5): 23−33. DUAN X X. Relationship between grinding kinetic parameters and grinding time[J]. Journal of Kunming Institute of Technology, 1988, 13(5): 23−33. |
[18] | 李同清, 彭玉兴. 研磨介质形状对铁矿石磨矿动力学研究[J]. 有色金属(选矿部分), 2018(1): 84−89+99. LI T Q, PENG Y X. Effect of grinding media shape on milling kinetics of iron ore particles[J]. Nonferrous Metals (Beneficiation), 2018(1): 84−89+99. |
[19] | 沈传刚.永平铜矿磨矿动力学模型的建立及应用研究[D].昆明:昆明理工大学,2017. SHEN C G. Research on the establishment and application of grinding dynamics model of Yongping Copper Mine[D]. Kunming: Kunming University of Science and Technology, 2017. |
[20] | 侯英, 印万忠, 朱巨建, 等. 不同碎磨方式下紫金山金铜矿石的磨矿动力学行为[J]. 中南大学学报(自然科学版), 2017, 48(5): 1127−1133. HOU Y, YIN W Z, ZHU J J, et al. Grinding dynamics behavior of gold-copper ore in Zijinshan under different grinding methods[J]. Journal of Central South University (Natural Science Edition), 2017, 48(5): 1127−1133. |
[21] | 侯英, 丁亚卓, 印万忠, 等. 磨矿动力学参数对磨矿速度的影响[J]. 东北大学学报(自然科学版), 2013, 34(5): 708−711. HOU Y, DING Y Z, YIN W Z, et al. Influence of grinding kinetic parameters on grinding speed[J]. Journal of Northeastern University (Natural Science Edition), 2013, 34(5): 708−711. |
[22] | DAVIS E W. Fine crushing in ball mills[J]. Transactions AIME, 1919, 61: 250−296. |
Bulk density and compressive strength of standard specimen
Elastic modulus and Poisson's ratio of standard specimen
Grinding kinetic curve of material larger than 8 mm
Grinding kinetic curves of 0.45~8 mm grades
Grinding kinetic curves of 0.3~0.45 mm grades
Grinding kinetic curves of 0.15~0.3 mm grades
Trend chart of each grade of material with time
Variation trend of grinding fineness under different gradations
Trend chart of intermediate easy-to-select levels under different gradations