Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 1
Article Contents

ZHANG Zhipeng, ZHOU Qiang, XIAO Qingfei, XIE Haosong, REN Yingdong. Experimental Study on Optimization of Grinding Medium Ratio in a Copper Mine Based on Grinding Kinetics[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 66-72. doi: 10.13779/j.cnki.issn1001-0076.2022.01.042
Citation: ZHANG Zhipeng, ZHOU Qiang, XIAO Qingfei, XIE Haosong, REN Yingdong. Experimental Study on Optimization of Grinding Medium Ratio in a Copper Mine Based on Grinding Kinetics[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 66-72. doi: 10.13779/j.cnki.issn1001-0076.2022.01.042

Experimental Study on Optimization of Grinding Medium Ratio in a Copper Mine Based on Grinding Kinetics

More Information
  • Corresponding author: XIAO Qingfei  
  • In view of the problem of ore grinding fineness and intermediate easy-to-separate particle grades yield caused by the mismatch between the grinding medium ratio m(Φ80)∶m(Φ60)=50∶50 and the grinding feed mechanical properties and particle size distribution in a copper mine in Yunnan, the recommended grinding medium ratio m(Φ70)∶m(Φ60)∶m(Φ50)∶m(Φ40)=15∶30∶10∶45 can be obtained based on the grinding kinetics principle. Comparative test results showed that compared with the on-site ratio, in the early stage of grinding (4 min), the yield of material particles larger than 0.3 mm increased by 1.01 percentage points, while the yield of particles in the range of 0.3 to 0.074 mm decreased by 7.88 percentage points. The grinding fineness (less than 0.074 mm) reached 79.85 percentage at 12 min, and the yield of intermediate easy-to-separate particle grade and over-pulverized particle grade were increased by 3.44 and 1.79 percentage points, respectively. Finally, the recommended medium ratio of the grinding media was m(Φ70)∶m(Φ60)∶m(Φ50)∶m(Φ40)=15∶30∶10∶45 for the selection of the beneficiation plant based on the grinding kinetics principle.

  • 加载中
  • [1] MU Y F, CHENG Y P, PENG Y J. The interaction of grinding media and collector in pyrite flotation at alkaline pH[J]. Minerals Engineering, 2020, 152: 106344. doi: 10.1016/j.mineng.2020.106344

    CrossRef Google Scholar

    [2] LARSSON S, PÅLSSON B I, PARIAB M, et al. A novel approach for modelling of physical interactions between slurry,grinding media and mill structure in wet stirred media mills[J]. Minerals Engineering, 2020, 148: 106180. doi: 10.1016/j.mineng.2019.106180

    CrossRef Google Scholar

    [3] DÍAZ E, L VOISIN, KRACHT W, et al. Using advanced mineral characterisation techniques to estimate grinding media consumption at laboratory scale[J]. Minerals Engineering, 2018, 121: 180−188. doi: 10.1016/j.mineng.2018.03.015

    CrossRef Google Scholar

    [4] 段希祥.碎矿与磨矿(第三版)[M].北京: 冶金工业出版社,2013.

    Google Scholar

    DUAN X X. Ore crushing and grinding (3th Edition) [M]. Beijing: Metallurgical Industry Press, 2013.

    Google Scholar

    [5] ZHOU W T, HAN Y X, SUN Y S, et al. Multi-scale impact crushing characteristics of polymetallic sulphide ores[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(9): 1929−1938. doi: 10.1016/S1003-6326(19)65100-9

    CrossRef Google Scholar

    [6] LIU S H, LI Q L, SONG J W. Study on the grinding kinetics of copper tailing powder[J]. Powder Technology, 2018, 330: 105−113. doi: 10.1016/j.powtec.2018.02.025

    CrossRef Google Scholar

    [7] IWASAKI T, YABUUCHI T, NAKAGAWA H, et al. Scale-up methodology for tumbling ball mill based on impact energy of grinding balls using discrete element analysis[J]. Advanced Powder Technology, 2010, 21(6): 623−629. doi: 10.1016/j.apt.2010.04.008

    CrossRef Google Scholar

    [8] CURRY J A, ISMAY M J L, JAMESON G J. Mine operating costs and the potential impacts of energy and grinding[J]. Minerals Engineering, 2014, 56: 70−80. doi: 10.1016/j.mineng.2013.10.020

    CrossRef Google Scholar

    [9] ZHANG X L, HAN Y X, GAO P, et al. Effects of particle size and ferric hydroxo complex produced by different grinding media on the flotation kinetics of pyrite[J]. Powder Technology, 2020, 360: 1028−1036. doi: 10.1016/j.powtec.2019.11.014

    CrossRef Google Scholar

    [10] NADOLSKI S, KLEIN B, KUMAR A, et al. An energy benchmarking model for mineral comminution[J]. Minerals Engineering, 2014, 65: 178−186. doi: 10.1016/j.mineng.2014.05.026

    CrossRef Google Scholar

    [11] MATIJASIC G, KURAJICA S. Grinding kinetics of amorphous powder obtained by solgel process[J]. Powder Technology, 2010, 197(3): 165−169. doi: 10.1016/j.powtec.2009.09.010

    CrossRef Google Scholar

    [12] OZKAN A, YEKELER M, CALKAYA M. Kinetics of wet grinding of zeolite in a steel ball mill in comparison to dry grinding[J]. International Journal of Mineral Processing, 2009, 90(1/2/3/4): 67−73. doi: 10.1016/j.minpro.2008.10.006

    CrossRef Google Scholar

    [13] RODRÍGUEZ B A, JUAN M, AGUADO M, et al. Transient stateanalysis by simulation in a closed grinding circuit[J]. Minerals Engineering, 2011, 24(5): 473−475. doi: 10.1016/j.mineng.2010.12.005

    CrossRef Google Scholar

    [14] BAZIN C, OBIANG P. Should the slurry density in a grinding mill be adjusted as a function of grinding media size[J]. Minerals Engineering, 2007, 20(8): 810−815. doi: 10.1016/j.mineng.2007.01.017

    CrossRef Google Scholar

    [15] FUERSTENAU D W, PHATAK P B, KAPUR P C, et al. Simulation ofthe grinding of coarse/fine(heterogeneous) systems in a ball mill[J]. International Journal of Mineral Processing, 2011, 99(1-4): 32−38. doi: 10.1016/j.minpro.2011.02.003

    CrossRef Google Scholar

    [16] 段希祥.碎矿与磨矿(第二版)[M].北京: 冶金工业出版社,2006:179-180.

    Google Scholar

    DUAN X X. Ore crushing and grinding (2nd Edition) [M]. Beijing: Metallurgical Industry Press, 2006: 179-180.

    Google Scholar

    [17] 段希祥. 磨矿动力学参数与磨矿时间的关系研究[J]. 昆明工学院学报, 1988, 13(5): 23−33.

    Google Scholar

    DUAN X X. Relationship between grinding kinetic parameters and grinding time[J]. Journal of Kunming Institute of Technology, 1988, 13(5): 23−33.

    Google Scholar

    [18] 李同清, 彭玉兴. 研磨介质形状对铁矿石磨矿动力学研究[J]. 有色金属(选矿部分), 2018(1): 84−89+99.

    Google Scholar

    LI T Q, PENG Y X. Effect of grinding media shape on milling kinetics of iron ore particles[J]. Nonferrous Metals (Beneficiation), 2018(1): 84−89+99.

    Google Scholar

    [19] 沈传刚.永平铜矿磨矿动力学模型的建立及应用研究[D].昆明:昆明理工大学,2017.

    Google Scholar

    SHEN C G. Research on the establishment and application of grinding dynamics model of Yongping Copper Mine[D]. Kunming: Kunming University of Science and Technology, 2017.

    Google Scholar

    [20] 侯英, 印万忠, 朱巨建, 等. 不同碎磨方式下紫金山金铜矿石的磨矿动力学行为[J]. 中南大学学报(自然科学版), 2017, 48(5): 1127−1133.

    Google Scholar

    HOU Y, YIN W Z, ZHU J J, et al. Grinding dynamics behavior of gold-copper ore in Zijinshan under different grinding methods[J]. Journal of Central South University (Natural Science Edition), 2017, 48(5): 1127−1133.

    Google Scholar

    [21] 侯英, 丁亚卓, 印万忠, 等. 磨矿动力学参数对磨矿速度的影响[J]. 东北大学学报(自然科学版), 2013, 34(5): 708−711.

    Google Scholar

    HOU Y, DING Y Z, YIN W Z, et al. Influence of grinding kinetic parameters on grinding speed[J]. Journal of Northeastern University (Natural Science Edition), 2013, 34(5): 708−711.

    Google Scholar

    [22] DAVIS E W. Fine crushing in ball mills[J]. Transactions AIME, 1919, 61: 250−296.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(6)

Article Metrics

Article views(175) PDF downloads(64) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint