Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 6
Article Contents

SONG Xia, YANG Aijiang, HU Xia, NIU Aping, ZHANG Qingqing, TIAN Yi. Mechanism and Application of Thiobacillus Ferrooxidans in Leaching of Metal Sulfide Ores[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 157-164. doi: 10.13779/j.cnki.issn1001-0076.2022.07.001
Citation: SONG Xia, YANG Aijiang, HU Xia, NIU Aping, ZHANG Qingqing, TIAN Yi. Mechanism and Application of Thiobacillus Ferrooxidans in Leaching of Metal Sulfide Ores[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 157-164. doi: 10.13779/j.cnki.issn1001-0076.2022.07.001

Mechanism and Application of Thiobacillus Ferrooxidans in Leaching of Metal Sulfide Ores

More Information
  • Theiobacillus ferrooxidans(T.f) plays an important role in the overall conservation and efficient use of mineral resources. There is a lot of research on the use of T.f bacteria to extract minerals with valuable metals, whereas there is a lack of systematic summary. Therefore, this paper introduces the physiological characteristics of T.f bacteria, the mechanism of immersion and the influencing factors of its immersion process. In addition, the direct and indirect mechanisms of T.f bacteria immersion are discussed, and the research status of the double oxidation system (iron oxidation system and sulfur oxidation system) and the role of Extracellular Polymeric Substances(EPS) produced by bacteria in the immersion process are discussed. Finally, the research progress of T.f bacteria in the extraction of various types of metal sulphides is expounded, and the direction of various kinds of applied research is still to be furthered, with the aim of providing a theoretical basis for the development direction of the efficient extraction and utilization of low-grade mineral resources in the future.

  • 加载中
  • [1] 栾和林, 姚文, 吴萌. 湿法冶金中的一些污染新问题的探讨[J]. 矿冶, 2002, 11(z1): 281-282. doi: 10.3969/j.issn.1005-7854.2002.z1.075

    CrossRef Google Scholar

    [2] 姜金龙, 戴剑峰, 冯旺军, 等. 火法和湿法生产电解铜过程的生命周期评价研究[J]. 兰州理工大学学报, 2006(1): 19-21. doi: 10.3969/j.issn.1673-5196.2006.01.005

    CrossRef Google Scholar

    [3] 周姗, 栗树珍, 钟慧, 等. 冶金模式微生物Acidithiobacillus ferrooxidans表面质子吸附特性的研究[J]. 矿产保护与利用, 2020, 40(4): 1-8.

    Google Scholar

    [4] SAND W, GEHRKE T. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(Ⅲ) ions and acidophilic bacteria[J]. Research in Microbiology, 2006, 157(1): 49-56. doi: 10.1016/j.resmic.2005.07.012

    CrossRef Google Scholar

    [5] R.E. 布坎南, N.E. 吉本斯. 伯杰细菌鉴定手册(中文第八版)[M]. 中国科学院微生物研究所《伯杰细菌鉴定手册》翻译组. 北京: 科学出版社, 1984.

    Google Scholar

    [6] 庄贺, 沈俊剑, 黎俊, 等. 氧化亚铁硫杆菌的分离鉴定及培养条件优化[J]. 微生物学通报, 2013, 40(7): 1131-1137.

    Google Scholar

    [7] 高健, 彭宏, 李邦梅, 等. 两株不同铁氧化细菌合成的沉淀差异性分析[J]. 中国有色金属学报, 2007(3): 453-458. doi: 10.3321/j.issn:1004-0609.2007.03.018

    CrossRef Google Scholar

    [8] 王艳锦, 郑正, 周培国, 等. 不同培养基中氧化亚铁硫杆菌生长及沉淀研究[J]. 生物技术, 2006, 16(4): 70-73. doi: 10.3969/j.issn.1004-311X.2006.04.028

    CrossRef Google Scholar

    [9] JENSEN A B, WEBB C. Ferrous sulphate oxidation using thiobacillus ferrooxidans: a review[J]. Process Biochemistry, 1995, 30(3): 225-236. doi: 10.1016/0032-9592(95)85003-1

    CrossRef Google Scholar

    [10] 宋永伟, 王蕊, 杨琳琳, 等. 三种次生矿物固定A. ferrooxidans的Fe2+氧化及成矿性能比较[J]. 中国环境科学, 2020, 40(5): 2073-2080. doi: 10.3969/j.issn.1000-6923.2020.05.025

    CrossRef Google Scholar

    [11] 田祖源, 李浩东, 魏茜, 等. Cu2+、Fe2+和Fe3+对中等嗜热混合菌浸出黄铜矿的影响[J]. 中国有色金属学报, 2021, 31(1): 171-180.

    Google Scholar

    [12] 邓明强, 白静, 白建峰, 等. 影响嗜酸氧化亚铁硫杆菌生长及生物浸出效率的研究进展[J]. 湿法冶金, 2016, 35(3): 171-175.

    Google Scholar

    [13] RAWLINGS D E, KUSANO T. Molecular genetics of Thiobacillus ferrooxidans. [J]. Microbiological Reviews, 1994, 58(1): 39-55. doi: 10.1128/mr.58.1.39-55.1994

    CrossRef Google Scholar

    [14] LIU M, BRANION R, DUNCAN D W. The effects of ferrous iron, dissolved oxygen, and inert solids concentrations on the growth of thiobacillus ferrooxidans[J]. The Canadian Journal of Chemical Engineering, 1988, 66(3): 445-451. doi: 10.1002/cjce.5450660315

    CrossRef Google Scholar

    [15] 李先艳. 高性能氧化亚铁硫杆菌菌株的诱变与培育[D]. 西安: 西安工程大学, 2019.

    Google Scholar

    [16] 陶语若. 抑制氧化亚铁硫杆菌作用下沉淀生成的研究[J]. 广州化工, 2012, 40(9): 111-113. doi: 10.3969/j.issn.1001-9677.2012.09.039

    CrossRef Google Scholar

    [17] TUOVINEN O H, NIEMELA S I, GYLLENBERG H G. Effect of mineral nutrients and organic substances on the development of Thiobacillus ferrooxidans[J]. Biotechnology and Bioengineering, 2010, 13(4): 517-527.

    Google Scholar

    [18] 刘欣伟, 冯雅丽, 李浩然, 等. 镁离子浓度对氧化亚铁硫杆菌生长动力学的影响[J]. 中国有色金属学报, 2012, 22(8): 2353-2359.

    Google Scholar

    [19] GOMEZ J M, GARO I. Kinetic equation for growth of Thiobacillus ferrooxidans in submerged culture over aqueous ferrous sulphate solutions[J]. Journal of Biotechnology, 1996, 48(1-2): 147-152. doi: 10.1016/0168-1656(96)01504-0

    CrossRef Google Scholar

    [20] BOON M, RAS C, HEIJNEN J J. The ferrous iron oxidation kinetics of Thiobacillus ferrooxidans in batch cultures[J]. Applied Microbiology and Biotechnology, 1999, 51(6): 813-819. doi: 10.1007/s002530051467

    CrossRef Google Scholar

    [21] SHI J, WANG D S, ZOU K Y. Domestication and Kinetics Parameters of Thiobacillus Ferrooxidans in High Concentration of Uranium[J]. Journal of Nantong University(Natural Science Edition), 2014, 13(3): 24-27.

    Google Scholar

    [22] HUANG T, LI D W. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy-a presentation[J]. Biotechnology Reports, 2014, 4(1): 107-119.

    Google Scholar

    [23] NT A, RSS B, CDH A. Microbial removal of sulphur from petroleum coke (petcoke)[J]. Fuel, 2019, 235: 1501-1505. doi: 10.1016/j.fuel.2018.08.072

    CrossRef Google Scholar

    [24] 伍赠玲. 黄铁矿对硫砷铜矿化学浸出的促进作用[J]. 中国有色金属学报, 2018, 28(11): 2376-2382.

    Google Scholar

    [25] FOWLER T A, CRUNDWELL F K. Leaching of zinc sulfide by Thiobacillus ferrooxidans: experiments with a controlled redox potential indicate no direct bacterial mechanism[J]. Applied and Environmental Microbiology, 1998, 64(10): 3570-3575. doi: 10.1128/AEM.64.10.3570-3575.1998

    CrossRef Google Scholar

    [26] 梁方圆, 吴冉冉, 曹昌丽, 等. 氧化亚铁硫杆菌的胞外电子传递研究[J]. 高等学校化学学报, 2014, 35(2): 372-376.

    Google Scholar

    [27] 何正国, 李雅芹, 周培瑾. 氧化亚铁硫杆菌的铁和硫氧化系统及其分子遗传学[J]. 微生物学报, 2000(5): 563-566. doi: 10.3321/j.issn:0001-6209.2000.05.021

    CrossRef Google Scholar

    [28] 田克立, 林建群, 张长铠, 等. 氧化亚铁硫杆菌铁氧化系统分子生物学研究进展[J]. 微生物学通报, 2002, 29(1): 85-88. doi: 10.3969/j.issn.0253-2654.2002.01.021

    CrossRef Google Scholar

    [29] 武华平. 氧化亚铁硫杆菌及其在环境工程中的应用[J]. 广东工业大学学报, 2005, 22(4): 18-21. doi: 10.3969/j.issn.1007-7162.2005.04.005

    CrossRef Google Scholar

    [30] VERA M, SCHIPPERS A, SAND W. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A[J]. Applied microbiology and biotechnology, 2013, 97(17): 7529-7541. doi: 10.1007/s00253-013-4954-2

    CrossRef Google Scholar

    [31] LI Y, KAWASHIMA N, LI J, et al. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite[J]. Adv Colloid Interface, 2013, 197/198: 1-32.

    Google Scholar

    [32] NARULA N, REINICKE M, HAFERBURG G, et al. Plant-microbe interaction in heavy-metal-contaminated soils[C] // Kothe E, Varma A. Bio-geo interactions in heavy metal-contaminated soils. Springer, Heidelberg, 2012: 143-162.

    Google Scholar

    [33] QUATRINI R, APPIA-AYME C, DENIS Y, et al. Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling[J]. Hydrometallurgy, 2006, 83(1/2/3/4): 263-272.

    Google Scholar

    [34] WANG R, LIN J, LIU X, et al. Sulfur oxidation in the acidophilic autotrophic acidithiobacillus spp[J]. Frontiers in Microbiology, 2019(9): 3290.

    Google Scholar

    [35] TAO H, LI D. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy a presentation[J]. Biotechnology Reports, 2014, 4(1): 107-119.

    Google Scholar

    [36] WAGNER T, KOCH J, ERMLER U, et al. Methanogenic heterodisulfide reductase (HdrABC-MvhAGD) uses two noncubane[4Fe-4S] clusters for reduction[J]. Science, 2017, 357(6352): 699-703. doi: 10.1126/science.aan0425

    CrossRef Google Scholar

    [37] LIU L, STOCKDREHER Y, KOCH T, et al. Thiosulfate transfer mediated by DsrE/TusA homologs from acidothermophilic sulfur-oxidizing archaeon metallosphaera cuprina[J]. Journal of Biological Chemistry, 2014, 289(39): 26949-26959. doi: 10.1074/jbc.M114.591669

    CrossRef Google Scholar

    [38] HOUGHTON J I, STEPHENSON T. Effect of influent organic content on digested sludge extracellular polymer content and dewaterability[J]. Water Research, 2002, 36(14): 3620-3628. doi: 10.1016/S0043-1354(02)00055-6

    CrossRef Google Scholar

    [39] HC A, JIA W B, BT A, et al. Generation behavior of extracellular polymeric substances and its correlation with extraction efficiency of valuable metals and change of process parameters during bioleaching of spent petroleum catalyst[J]. Chemosphere, 2021, 275: 130006. doi: 10.1016/j.chemosphere.2021.130006

    CrossRef Google Scholar

    [40] 皋德祥, 邓欢欢, 张明华, 等. 微生物胞外聚合物的研究进展[J]. 温州医学院学报, 2012, 42(3): 297-301. doi: 10.3969/j.issn.1000-2138.2012.03.030

    CrossRef Google Scholar

    [41] YI Q, WU S, SOUTHAM G, et al. Acidophilic iron- and sulfur-oxidizing bacteria, acidithiobacillus ferrooxidans, drives alkaline pH neutralization and mineral weathering in Fe ore Tailings. [J]. Environmental science & technology, 2021, 55: 8020-8034.

    Google Scholar

    [42] 余志波, 刘亚洁, 吴静琳, 等. 生物浸矿过程中细菌胞外聚合物的作用研究进展[J]. 有色金属(冶炼部分), 2016(2): 1-6. doi: 10.3969/j.issn.1007-7545.2016.02.001

    CrossRef Google Scholar

    [43] RAMÍREZ P, GUILIANI N, VALENZUELA L, et al. Differential protein expression during growth of acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides[J]. Applied & Environmental Microbiology, 2004, 70(8): 4491-4498.

    Google Scholar

    [44] VARDANYAN A, VARDANYAN N, KHACHATRYAN A, et al. Adhesion to mineral surfaces by cells of leptospirillum, acidithiobacillus and sulfobacillus from armenian sulfide ores[J]. Minerals, 2019, 9(2): 69. doi: 10.3390/min9020069

    CrossRef Google Scholar

    [45] SAAVEDRA A, AGUIRRE P, GENTINA J C. Climbing the hill: The implications of a two-step adaptation on biooxidation of ferrous ion at high total iron concentrations by At. ferrooxidans[J]. Hydrometallurgy, 2020, 197: 105486. doi: 10.1016/j.hydromet.2020.105486

    CrossRef Google Scholar

    [46] GAO X, LIU X, FU C, et al. Novel Strategy for Improvement of the Bioleaching Efficiency of Acidithiobacillus ferrooxidans Based on the AfeI/R Quorum Sensing System[J]. Minerals, 2020, 10(3): 222. doi: 10.3390/min10030222

    CrossRef Google Scholar

    [47] ZENG W, LI F, WU C, et al. Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals[J]. Bioprocess and Biosystems Engineering, 2020, 43(1): 153-167. doi: 10.1007/s00449-019-02213-7

    CrossRef Google Scholar

    [48] HARNEIT K, GÖKSEL A, KOCK D, et al. Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans[J]. Hydrometallurgy, 2006, 83(1/2/3/4): 245-254.

    Google Scholar

    [49] 郑蕾, 丁爱中, 王金生, 等. 不同组成活性污泥胞外聚合物吸附Cd2+, Zn2+特征[J]. 环境科学, 2008, 29(10): 2850-2855. doi: 10.3321/j.issn:0250-3301.2008.10.029

    CrossRef Google Scholar

    [50] 杨洪英, 王胜利, 佟琳琳, 等. 微生物胞外聚合物在浸矿过程中作用的研究进展[J]. 有色金属, 2010, 62(3): 103-105. doi: 10.3969/j.issn.2095-1744.2010.03.024

    CrossRef Google Scholar

    [51] YUAN X, YUAN C, GONG W, et al. The depression of pyrite flotation by thibacillus ferrooxidans[J]. Journal of Wuhan University of Technology(Materials ence Edition), 2000, 15(1): 60-65.

    Google Scholar

    [52] PIROG T P, KORZHB Y V, SHEVCHUKB T A. The effect of cultivation conditions on the physicochemical properties of the exopolysaccharide ethapolan[J], 2009, 45(1): 50-55.

    Google Scholar

    [53] DIGNAC M F, URBAIN V, RYBACKI D, et al. Chemical description of extracellular polymers: implication on activated sludge floc structure[J]. Water Science and Technology, 1998, 38(8/9): 45-53.

    Google Scholar

    [54] 袁冬琴, 王毅力. 活性污泥胞外聚合物(EPS)的分层组分及其理化性质的变化特征研究[J]. 环境科学, 2012, 33(10): 3522-3528.

    Google Scholar

    [55] 王利, 温建康. 嗜酸氧化亚铁硫杆菌胞外聚合物浸矿作用研究[J]. 金属矿山, 2011, 40(7): 86-89.

    Google Scholar

    [56] 虞艳云. 胞外聚合物在含铁矿物同微生物界面过程中的作用研究[D]. 合肥: 合肥工业大学, 2014.

    Google Scholar

    [57] DUNCAN D W, TRUSSELL P C, WALDEN C C. Leaching of Chalcopyrite with Thiobacillus ferrooxidans: Effect of Surfactants and Shaking[J]. Applied Microbiology, 1964, 12(2): 122-126. doi: 10.1128/am.12.2.122-126.1964

    CrossRef Google Scholar

    [58] 王超远. 氧化亚铁硫杆菌浸出硫化铜矿试验研究[D]包头: 内蒙古科技大学, 2020.

    Google Scholar

    [59] GUO Y, HUANG P, ZHANG W, et al. Leaching of heavy metals from Dexing copper mine tailings pond[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(10): 3068-3075. doi: 10.1016/S1003-6326(13)62835-6

    CrossRef Google Scholar

    [60] LIZAMA H M, SUZUKI I. Rate equations and kinetic parameters of the reactions involved in pyrite oxidation by thiobacillus ferrooxidans[J]. Applied & Environmental Microbiology, 1989, 55(11): 2918-2923.

    Google Scholar

    [61] LIZAMA H M, SUZUKI I. Bacterial leaching of a sulfide ore by Thiobacillus ferrooxidans and Thiobacillus thiooxidans part Ⅱ: Column leaching studies[J]. Hydrometallurgy, 1989, 33(3): 301-310.

    Google Scholar

    [62] 邓蓉, 张小云, 张梦雪, 等. 嗜酸氧化亚铁硫杆菌培养及其影响因素[J]. 湘潭大学自然科学学报, 2014(4): 67-71. doi: 10.3969/j.issn.1000-5900.2014.04.013

    CrossRef Google Scholar

    [63] 金吉梅. 微生物强化浸出氧化铜矿的试验研究[D]. 赣州: 江西理工大学, 2010.

    Google Scholar

    [64] 李靓洁, 董发勤, 谌书, 等. 氧化亚铁硫杆菌浸取黄铜矿石影响因素的试验研究[J]. 矿物学报, 2012, 32(3): 449-454.

    Google Scholar

    [65] PÉCOU E, MAASS A, REMENIK D, et al. A mathematical model for copper homeostasis in Enterococcus hirae[J]. Mathematical Biosciences, 2006, 203(2): 222-239. doi: 10.1016/j.mbs.2006.04.009

    CrossRef Google Scholar

    [66] 马骏, 汪菊香, 武彪, 等. 晶体结构对黄铜矿、黄铁矿生物浸出差异性影响[J]. 中国有色金属学报, 2015, 25(10): 2898-2904.

    Google Scholar

    [67] NIE Z, ZHANG W, LIU H, et al. Bioleaching of chalcopyrite with different crystal phases by Acidianus manzaensis[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(3): 617-624. doi: 10.1016/S1003-6326(19)64971-X

    CrossRef Google Scholar

    [68] 刘新艳, 刘丹丹, 张鸣昕. 提高金矿生物氧化细菌耐温性能试验研究[J]. 有色金属(选矿部分), 2015(5): 48-51. doi: 10.3969/j.issn.1671-9492.2015.05.011

    CrossRef Google Scholar

    [69] 董颖博, 林海, 陆琳斐, 等. 浮选药剂对嗜酸氧化亚铁硫杆菌活性的影响[J]. 化工学报, 2011(6): 1662-1668. doi: 10.3969/j.issn.0438-1157.2011.06.028

    CrossRef Google Scholar

    [70] D·内斯托, 向平, 肖力子. 用氧化亚铁硫杆菌生物浸出难处理金矿物的机理[J]. 国外金属矿选矿, 2001, 38(11): 11-14+10.

    Google Scholar

    [71] 剡倩, 张苗苗, 郭晓鹏, 等. X射线诱变选育嗜酸氧化亚铁硫杆菌及其对难处理金矿浸出的研究[J]. 辐射研究与辐射工艺学报, 2016, 34(5): 40-46.

    Google Scholar

    [72] 苏贵珍, 陆建军, 陆现彩, 等. 微生物-矿物接触作用对金属硫化物溶解的影响—氧化亚铁硫杆菌参与黄铜矿溶解的初步研究[J]. 地学前缘, 2008, 15(6): 100-106. doi: 10.3321/j.issn:1005-2321.2008.06.013

    CrossRef Google Scholar

    [73] 项拥军. 氧化亚铁硫杆菌对黄铜矿的氧化作用[J]. 金属矿山, 2000, 10(10): 24-24. doi: 10.3321/j.issn:1001-1250.2000.10.010

    CrossRef Google Scholar

    [74] 余润兰, 刘晶, 陈安, 等. 嗜酸氧化亚铁硫杆菌(ATCC 23270)浸出黄铜矿过程中的EPS、Cu2+和Fe3+的相互作用机制(英文)[J]. 中国有色金属学报: 英文版, 2013(1): 231-236.

    Google Scholar

    [75] 薛洪其. 氧化亚铁硫杆菌对钼镍尾矿金属的浸出作用及其机理探讨[D]. 贵州: 贵州大学, 2017.

    Google Scholar

    [76] 黎丹丹. 氧化亚铁硫杆菌和氧化硫硫杆菌联合浸出铊矿尾矿及浸出液毒性评价[D]. 贵州: 贵州大学.

    Google Scholar

    [77] 张青青, 杨爱江, 姚维, 等. 硫氧化细菌对锑矿尾矿重金属浸出研究[J]. 环境科学与技术, 2014(5): 26-30.

    Google Scholar

    [78] 张旭, 冯雅丽, 张小伟. 黄铁矿-微生物体系还原浸出低品位氧化锰矿工艺过程研究[J]. 矿冶工程, 2018, 38(5): 106-108+112.

    Google Scholar

    [79] 刘晓燕. 用于软锰矿脱硫的铁、锰氧化细菌的诱变育种及其对Fe、Mn的氧化动力学研究[D]. 成都: 四川大学, 2005.

    Google Scholar

    [80] 李志章, 徐晓军. 氧化亚铁硫杆菌对低品位锰矿浸出的试验研究[J]. 金属矿山, 2006(11): 50-53. doi: 10.3321/j.issn:1001-1250.2006.11.014

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(1)

Article Metrics

Article views(1969) PDF downloads(42) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint