Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 6
Article Contents

SUN Xiaoxu, WANG Dubo, YAO Jianchao, HE Jiancheng. Research Progress of Wet Fine Grinding Technology[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 174-178. doi: 10.13779/j.cnki.issn1001-0076.2022.06.019
Citation: SUN Xiaoxu, WANG Dubo, YAO Jianchao, HE Jiancheng. Research Progress of Wet Fine Grinding Technology[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 174-178. doi: 10.13779/j.cnki.issn1001-0076.2022.06.019

Research Progress of Wet Fine Grinding Technology

  • On the basis of introducing the important effect of wet fine grinding technology in the process of fine grinding in the mineral process field, analyzing the wet fine grinding prototype of the screw, rod. Theoretical analysis of energy dissipation, grinding media motion of wet fine grinding and simulation processes and results based on CFD, DEM and PEPT were discussed emphatically. Also, the research progress of wet fine grinding technology and equipment were analyzed. Then, the typical structure research, technical optimization, development and application progress of wet fine grinding technology and equipment were summarized, so as to give a hand to the research and popularization of wet fine grinding technology and equipment. And, they could lay a foundation for the realization of energy-saving and efficient fine grinding and ultra-fine grinding in mineral process industry.

  • 加载中
  • [1] 卢世杰, 刘佳鹏, 何建成, 等. 几种典型搅拌磨机磨矿机理的研究进展[J]. 有色金属(选矿部分), 2017(z1): 13−21.

    Google Scholar

    LU S J, LIU J P, HE J C, et al. Typical wet stirring fine grinding technology and application progress[J]. Nonferrous Metals (Mineral Processing Section), 2017(z1): 13−21.

    Google Scholar

    [2] 卢世杰, 孙小旭, 何建成, 等. 典型湿式搅拌细磨技术与应用进展[J]. 矿产保护与利用, 2020, 40(1): 159−165. doi: 10.13779/j.cnki.issn1001-0076.2020.01.019

    CrossRef Google Scholar

    LU S J, SUN X X, HE J C, et al. Typical wet stirring fine grinding technology and application progress[J]. Conservation and Utilization of Mineral Resources, 2020, 40(1): 159−165. doi: 10.13779/j.cnki.issn1001-0076.2020.01.019

    CrossRef Google Scholar

    [3] JANKOVIC A. Mathematical modelling of stirred mills[D]. Australia, Queensland: University of Queensland, 1999.

    Google Scholar

    [4] 李椿楠, 李国峰, 刘立伟, 等. 搅拌磨机的研究及应用现状[J]. 矿产综合利用, 2021(4): 110−117. doi: 10.3969/j.issn.1000-6532.2021.04.017

    CrossRef Google Scholar

    LI C N, LI G F, LIU L W, et al. Research and application status of stirring mill[J]. Maltipurpose Utilization of Mineral Resources, 2021(4): 110−117. doi: 10.3969/j.issn.1000-6532.2021.04.017

    CrossRef Google Scholar

    [5] SHI F, MORRISON R, CERVELLIN A, et al. Comparison of energy efficiency between ball mills and stirred mills in coarse grinding[J]. Minerals Enginnering, 2009, 22(7): 673−680.

    Google Scholar

    [6] JANKOVIC A. Variables affecting the fine grinding of minerals using stirred mills[J]. Minerals Engineering, 2003, 16(4): 337−345. doi: 10.1016/S0892-6875(03)00007-4

    CrossRef Google Scholar

    [7] SCHONERT K. Advances in comminution fundamental, and impacts on technology[A]. ⅩⅦ International Mineral Processing Congress, Dresden, 1991, 9(1): 1-21.

    Google Scholar

    [8] STEHR N, SCHWEDES J. Investigation of the grinding behaviour of a stirred ball mill[J]. German Chemical Engineering, 1983, 6(6): 337−343.

    Google Scholar

    [9] STEHR N. Recent developments in stirred ball milling[J]. International Journal Mineral Processing, 1988, 22(1): 431−444.

    Google Scholar

    [10] KWADE A. Wet comminution in stirred media mills-research and its practical application[J]. Powder Technology, 1999, 105(1/2/3): 14−20.

    Google Scholar

    [11] KWADE A. Determination of the most important grinding mechanism in stirred media mills by calculating stress intensity and stress number[J]. Powder Technology, 1999, 105(1/2/3): 382−388.

    Google Scholar

    [12] KWADE A, SCHWEDES J. Breaking characteristics of different materials and their effect on stress intensity and stress number in stirred media mills[J]. Powder Technology, 2002, 122(2/3): 109−121.

    Google Scholar

    [13] BECKER M, KWADE A, SCHWEDES J. Stress intensity in stirred media mills and its effect on specific energy requirement[J]. Int. J. Miner. Process, 2001, 61(3): 189−208. doi: 10.1016/S0301-7516(00)00037-5

    CrossRef Google Scholar

    [14] JANKOVIC A. Media stress intensity analysis for vertical stirred mills[J]. Minerals Engineering, 2001, 14(10): 1177−1186. doi: 10.1016/S0892-6875(01)00135-2

    CrossRef Google Scholar

    [15] COOKER B, NEDDERMAN R M. Circulation and power consumption in helical ribbon powder agitators[J]. Powder Technology, 1987, 52(2): 117−129. doi: 10.1016/0032-5910(87)80142-0

    CrossRef Google Scholar

    [16] RYDIN R W, MAURICE D, COURTNEY T H. Milling dynamics: part 1. attritor dynamics: results of a cinematographic study[J]. Metallurgical Transactions, 1993, 24(1): 175−185. doi: 10.1007/BF02669614

    CrossRef Google Scholar

    [17] DUFFY, S. M. Investigation into the performance characteristics of tower mills[D]. Australia, Queensland: University of Queensland, 1994.

    Google Scholar

    [18] STENDER H H, KWADE A, SCHWEDES J. Stress energy distribution in different stirred media mill geometries[J]. Int. J. Miner. Process, 2004, 74: 103−117. doi: 10.1016/j.minpro.2004.07.003

    CrossRef Google Scholar

    [19] JANKOVIC A, MORRELL S. Power modelling of stirred mills[C]∥Proceedings of the Second UBC-MCGILL BI-Annual International Symposium on Fundamentals of Mineral Processing and the Environment, Sudbury, Ontario, Canada, 1997: 195-208.

    Google Scholar

    [20] BLECHER L, KWADE A, SCHWEDES J. Motion and stress intensity of grinding beads in a stirred media mill. Part 1: Energy density distribution and motion of single grinding beads[J]. Powder Technology, 1996, 86(1): 59−68. doi: 10.1016/0032-5910(95)03038-7

    CrossRef Google Scholar

    [21] KWADE A, BLECHER L, SCHWEDES J. Motion and stress intensity of grinding beads in a stirred media mill. Part 2: Stress intensity and its effect on comminution[J]. Powder Technology, 1996, 86(1): 69−76. doi: 10.1016/0032-5910(95)03039-5

    CrossRef Google Scholar

    [22] JAYASUNDARA C T, YANG R Y, GUO B Y, et al. Effect of slurry properties on particle motion in IsaMills[J]. Minerals Engineering, 2009(11): 886−892.

    Google Scholar

    [23] JAYASUNDARA C T, YANG R Y, YU A B, et al. Effects of disc rotation speed and media loading on particle flow and grinding performance in a horizontal stirred mill[J]. Int. J. Miner. Process, 2010, 96(1): 27−35.

    Google Scholar

    [24] JAYASUNDARA C T, YANG R Y, YU A B. Effect of the size of media on grinding performance in stirred mills[J]. Minerals Engineering, 2012, 33: 66−71. doi: 10.1016/j.mineng.2011.10.012

    CrossRef Google Scholar

    [25] SINNOTT M, CLEARY P W, MORRISON R D. Slurry flow in a tower mill[J]. Minerals Engineering, 2011, 24(2): 152−159. doi: 10.1016/j.mineng.2010.11.002

    CrossRef Google Scholar

    [26] SINNOTT M D, CLEARY P W, MORRISON R D. Is media shape important for grinding performance in stirred mills[J]. Minerals Engineering, 2011, 24(2): 138−151. doi: 10.1016/j.mineng.2010.10.016

    CrossRef Google Scholar

    [27] R. W. BARLEY, J. CONWAY-BAKER, R. D. Pascoe, et al. Measurement of the motion of grinding media in a vertically stirred mill using positron emission particle tracking (PEPT) Part Ⅱ[J]. Minerals Engineering, 2004, 17(11): 1179−1187.

    Google Scholar

    [28] J. CONWAY-BAKER, R. W. BARLEY, R. A. Williams, et al. Measurement of the motion of grinding media in a vertically stirred mill using positron emission particle tracking (PEPT)[J]. Minerals Engineering, 2002, 15(1): 53−59.

    Google Scholar

    [29] 孙小旭, 卢世杰, 周宏喜, 等. 细磨用KLM立磨机选型试验研究[J]. 铜业工程, 2018(6): 73−76. doi: 10.3969/j.issn.1009-3842.2018.06.021

    CrossRef Google Scholar

    SUN X X, LU S J, ZHOU H X, et al. Experimental study on selection of KLM vertical mill for fine grinding[J]. Copper engineering, 2018(6): 73−76. doi: 10.3969/j.issn.1009-3842.2018.06.021

    CrossRef Google Scholar

    [30] 孙小旭. GJM型棒式搅拌磨机工业试验研究[J]. 有色金属(选矿部分), 2017(3): 66−69.

    Google Scholar

    SUN X X. Industrial test research on GJM rod stirred mill[J]. Nonferrous Metals(mineral processing section), 2017(3): 66−69.

    Google Scholar

    [31] 何建成, 孙小旭, 姚建超, 等石墨高效再磨擦洗技术及工业试验研究[J]有色金属(选矿部分), 2018(2) : 78-81.

    Google Scholar

    HE J C, SUN X X, YAO J C, et al. Study on High efficiency regrinding and washing technology of graphite and industrial test[J]. Nonferrous Metals(mineral processing section), 2018(2) : 78-81.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(162) PDF downloads(37) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint