Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 6
Article Contents

FU Zhongqiao, HOU Yanrui, HUANG Jiahao, CHENG De, LI Guanghui. Study on the Separation and Recovery of Re(Ⅶ) from Molybdenum Concentrate Oxygen-pressure Leaching Solution by D201 Resin[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 115-122. doi: 10.13779/j.cnki.issn1001-0076.2022.06.015
Citation: FU Zhongqiao, HOU Yanrui, HUANG Jiahao, CHENG De, LI Guanghui. Study on the Separation and Recovery of Re(Ⅶ) from Molybdenum Concentrate Oxygen-pressure Leaching Solution by D201 Resin[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 115-122. doi: 10.13779/j.cnki.issn1001-0076.2022.06.015

Study on the Separation and Recovery of Re(Ⅶ) from Molybdenum Concentrate Oxygen-pressure Leaching Solution by D201 Resin

More Information
  • In order to develop a low-cost and environmentally friendly ion exchange process to recover rhenium, a modified D201 anion exchange resin was used to separate and recover rhenium (Ⅶ) from the oxygen-pressure leaching solution of molybdenum concentrate based on the difference in ionic forms of molybdenum-rhenium ions in acidic systems. The effects of initial pH, rotating speed, resin relative dosage, adsorption temperature and adsorption time on the recovery of rhenium were investigated, and the leachate and modified resin were characterized and analyzed by Raman, FTIR and SEM. The results showed that under the conditions of initial pH=1.70, speed 300 r/min, adsorption temperature of 20 ℃, adsorption time of 60 min and resin dosage of 0.002 g/mL, the adsorption rate of rhenium reached 98.81%, while the adsorption rates of molybdenum, iron and cerium were only 0.44%, 1.04% and 1.25%, respectively. The maximum separation coefficients of rhenium from molybdenum, iron and cerium were 262.25, 104.60 and 89.02, respectively. In the actual oxygen pressure leaching solution, molybdenum, iron and cerium mainly exist in the form of cations such as MoO22+, Fe3+ and Ce3+, and rhenium exists in the form of ReO4- anion. The modified D201 anion exchange resin selectively adsorbs on rhenium ions through electrostatic attraction and chelation to achieve effective separation of rhenium from molybdenum, iron and cerium.

  • 加载中
  • [1] 方健, 吴丹丹, 文书明, 等. 稀散金属铼资源综合回收利用研究进展[J]. 矿产保护与利用, 2020, 40(5): 62−69. doi: 10.13779/j.cnki.issn1001-0076.2020.05.008

    CrossRef Google Scholar

    FANG J, WU D D, WEN S M, et al. Research progress on comprehensive recovery and utilization of rhenium resources[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 62−69. doi: 10.13779/j.cnki.issn1001-0076.2020.05.008

    CrossRef Google Scholar

    [2] 郭娟, 崔荣国, 王卉, 等. 世界铼资源供需现状及展望[J]. 国土资源情报, 2020(10): 67−74.

    Google Scholar

    GUO J, CUI R G, WANG H, et al. Supply and demand situation and outlook of global rhenium resources[J]. Land and Resources Information, 2020(10): 67−74.

    Google Scholar

    [3] 陈喜峰, 陈秀法, 李娜, 等. 全球铼矿资源分布特征与开发利用形势及启示[J]. 中国矿业, 2019, 28(5): 7−12.

    Google Scholar

    CHEN X F, CHEN X F, LI N, et al. Global rhenium ore resource distribution characteristics and development and utilization situation and inspiration[J]. China Mining, 2019, 28(5): 7−12.

    Google Scholar

    [4] 王海勇, 何亮. 浅谈铼的富集规律和综合利用[J]. 中国资源综合利用, 2018, 36(11): 70−72.

    Google Scholar

    WANG H Y, HE L. Briefly discuss the enrichment law and comprehensive utilization of rhenium[J]. China Resource Comprehensive Utilization, 2018, 36(11): 70−72.

    Google Scholar

    [5] 刘红召, 王威, 曹耀华, 等. 世界铼资源及市场现状[J]. 矿产保护与利用, 2014(5): 55−58. doi: 10.13779/j.cnki.issn1001-0076.2014.05.014

    CrossRef Google Scholar

    LIU H Z, WANG W, CAO Y H, et al. World rhenium resources and market status[J]. Conservation and Utilization of Mineral Resources, 2014(5): 55−58. doi: 10.13779/j.cnki.issn1001-0076.2014.05.014

    CrossRef Google Scholar

    [6] 黄翀, 陈其慎, 李颖, 等. 2030年全球及中国铼资源需求刍议[J]. 中国矿业, 2014, 23(9): 9−11. doi: 10.3969/j.issn.1004-4051.2014.09.003

    CrossRef Google Scholar

    HUANG C, CHEN Q S, LI Y, et al. Rumination on global and Chinese rhenium resource demand in 2030[J]. China Mining, 2014, 23(9): 9−11. doi: 10.3969/j.issn.1004-4051.2014.09.003

    CrossRef Google Scholar

    [7] 吴贤, 李来平, 张文钲, 等. 铼的性质及铼资源分布[J]. 矿业快报, 2008(11): 67−69.

    Google Scholar

    WU X, LI L P, ZHANG W Z, et al. The nature of rhenium and the distribution of rhenium resources[J]. Modern Mine, 2008(11): 67−69.

    Google Scholar

    [8] HUANG Y, ZHANG B, LIU B, et al. Clean and deep separation of molybdenum and rhenium fromultra-low concentration solutions via vapidly stepwise selective coagulation and flocculation precipitation[J]. Separation and Purification Technology, 2021, 267: 118632.

    Google Scholar

    [9] HONG T, LIU M, MA J, et al. Selective recovery of rhenium from industrial leach solutions by synergistic solvent extraction[J]. Separation and Purification Technology, 2020, 236: 116281.

    Google Scholar

    [10] SHEN L, TESFAYE F, LI X, et al. Review of rhenium extraction and recycling technologies from primary and secondary resources[J]. Minerals Engineering, 2021, 161: 106719.

    Google Scholar

    [11] ZAGORODNYAYA A N, ABISHEVA Z S, SHARIPOVA A S, et al. Sorption of rhenium and uranium by strong base anion exchange resin from solutions with different anion compositions[J]. Hydrometallurgy, 2013, 131/132: 127−132.

    Google Scholar

    [12] 刘伟, 丁留亮, 郭明宜, 等. 钼冶金中铼的综合提取研究进展[J]. 稀有金属与硬质合金, 2017, 45(5): 1−6.

    Google Scholar

    LIU W, DING L L, GUO M Y, et al. Research progress of comprehensive extraction of rhenium in molybdenum metallurgy[J]. Rare Metal and Cemented Carbides, 2017, 45(5): 1−6.

    Google Scholar

    [13] 李洪桂. 离子交换技术在钼冶金中的应用[J]. 中国钼业, 1994(3): 1−7.

    Google Scholar

    LI H G. Application of ion exchange technology in molybdenum metallurgy[J]. China Molybdenum Industry, 1994(3): 1−7.

    Google Scholar

    [14] HUA R, ZHANG Y, LIU F, et al. Study of the ability of 2-AMPR resin to separate Re(Ⅶ) from U(Ⅵ) in acidic aqueous solutions[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 326(1): 261−271.

    Google Scholar

    [15] XIONG C, YAO C, WU X. Adsorption of rhenium(Ⅶ) on 4-amino-1,2,4-triazole resin[J]. Hydrometallurgy, 2008, 90(2/3/4): 221−226.

    Google Scholar

    [16] AHMADI M. Breakthrough curves for adsorption and elution of rhenium in a column ion exchange system[J]. Hydrometallurgy, 2007, 85(1): 17−23.

    Google Scholar

    [17] LESZCZYNSKA-SEJDA G, BENKE A, CHMIELARZ S, et al. Synthesis of perrhenic acid using ion exchange method[J]. Hydrometallurgy, 2007, 89(3/4): 289−296.

    Google Scholar

    [18] 付云枫.氧压水浸法分解辉钼矿提取分离钼硫资源的应用基础研究[D].北京:中国科学院大学(中国科学院过程工程研究所), 2018.

    Google Scholar

    FU Y F. Basic research on the application of oxygen-pressure water leaching method to decompose pyromorphite to extract and separate molybdenum and sulfur resources[D]. Beijing: University of Chinese Academy of Sciences (Institute of Process Engineering, Chinese Academy of Sciences), 2018.

    Google Scholar

    [19] JIA M, CUI H M, JIN W Q, et al. Adsorption and separation of rhenium(Ⅶ) using N‐methylimidazolium functionalized strong basic anion exchange resin[J]. Journal of Chemical Technology & Biotechnology, 2012.

    Google Scholar

    [20] 邱朝辉.钼、铼的萃取与离子交换分离研究[D].长沙:中南大学,2010.

    Google Scholar

    QIU Z H. Extraction and ion exchange separation study of molybdenum and rhenium[D]. Changsha: Central South University, 2010.

    Google Scholar

    [21] CYGANOWSKI P, CIERLIK A, LESNIEWICZ A, et al. Separation of Re(Ⅶ) from Mo(Ⅵ) by anion exchange resins synthesized using microwave heat[J]. Hydrometallurgy, 2019, 185: 12−22.

    Google Scholar

    [22] HUANG Y, ZHANG B, LIU B, et al. Clean and deep separation of molybdenum and rhenium from ultra-low concentration solutions via vapidly stepwise selective coagulation and flocculation precipitation[J]. Separation and Purification Technology, 2021, 267(8): 118632.

    Google Scholar

    [23] FU Y F, XIAO Q G, GAO Y Y, et al. Pressure aqueous oxidation of molybdenite concentrate with oxygen[J]. Hydrometallurgy, 2017, 174: 131-139.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(2)

Article Metrics

Article views(152) PDF downloads(8) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint