Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 3
Article Contents

LIU Peng, LIU Lei, TIAN Xin, WANG Yinhui, NIE Shaojun, HAN Xiuli. Reviews of the Process Mineralogy Characteristics and Comprehensive Utilization Technology of Iron Ore Tailings in China[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 169-178. doi: 10.13779/j.cnki.issn1001-0076.2022.03.023
Citation: LIU Peng, LIU Lei, TIAN Xin, WANG Yinhui, NIE Shaojun, HAN Xiuli. Reviews of the Process Mineralogy Characteristics and Comprehensive Utilization Technology of Iron Ore Tailings in China[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 169-178. doi: 10.13779/j.cnki.issn1001-0076.2022.03.023

Reviews of the Process Mineralogy Characteristics and Comprehensive Utilization Technology of Iron Ore Tailings in China

More Information
  • The comprehensive utilization technology of iron ore tailings has played an important role in the green mine construction and social and economic sustainable development in China. On these accounts of large emission, low scale utilization rate and complex composition of tailings and low added value of iron ore tailings based products, It has become an urgent objective requirement of green mines to realize the comprehensive and efficient utilization of iron ore tailings. In this paper, the current research status of iron ore tailings in two aspects involving process mineralogy characteristics and recycling technology were summarized, including the particle size, mineral composition, associated elements and chemical composition of different types of iron ore tailings, as well as the recovery of beneficial components from tailings. In addition, the current research status of iron ore tailings in used as building materials, filling materials, fertilizer and soil amendments, mesoporous materials, 3D printing materials and so on were discussed. Meanwhile, the problems existing in iron ore tailings comprehensive utilization technology were point out, and the direction of efficient utilization was suggested. The above work provides reference for efficient utilization of iron ore tailings with different mineral composition and different types.

  • 加载中
  • [1] 刘淑鹏, 张小伟. 我国金属矿山尾矿综合利用现状及对策[J]. 中国资源综合利用, 2020, 38(3): 75-78. doi: 10.3969/j.issn.1008-9500.2020.03.023

    CrossRef Google Scholar

    LIU S P, ZHANG X W. Comprehensive utilization status and countermeasures of tailings in metal mines in China[J]. Comprehensive Utilization of Resources in China, 2020, 38(3): 75-78. doi: 10.3969/j.issn.1008-9500.2020.03.023

    CrossRef Google Scholar

    [2] 黄勇刚. 我国铁尾矿资源的利用现状及展望[J]. 资源与产业, 2013(3): 40-44.

    Google Scholar

    HUANG Y G. Utilization status and prospect of iron tailings resources in China[J]. Resources and Industry, 2013(3): 40-44.

    Google Scholar

    [3] 刘玉林, 刘长淼, 刘红召, 等. 我国矿山尾矿利用技术及开发利用建议[J]. 矿产保护与利用, 2018(6): 140-144.

    Google Scholar

    LIU Y L, LIU C M, LIU H Z, et al. Suggestions on utilization technology and development of mine tailings in China[J]. Conservation and Utilization of Mineral Resources, 2018(6): 140-144.

    Google Scholar

    [4] 杨亚东, 刘新亮, 张冰, 等. 铁尾矿资源综合利用现状研究[J]. 化工矿物与加工, 2021, 50(1): 28-32.

    Google Scholar

    YANG Y D, LIU X L, Z B, et al. Research on the current status of the comprehensive utilization of iron tailings resources[J]. Chemical Minerals and Processing, 2021, 50(1): 28-32.

    Google Scholar

    [5] 陈虎, 沈卫国, 单来, 等. 国内外铁尾矿排放及综合利用状况探讨[J]. 混凝土, 2012(2): 88-92. doi: 10.3969/j.issn.1002-3550.2012.02.028

    CrossRef Google Scholar

    CHEN H, SHEN W G, SHAN L, et al. Discussion on the emission and comprehensive utilization of iron tailings at home and abroad[J]. Concrete, 2012(2): 88-92. doi: 10.3969/j.issn.1002-3550.2012.02.028

    CrossRef Google Scholar

    [6] GIRI S, DAS N, PRADHAN G. Magnetite powder and kaolinite derived from waste iron tailings for environmental applications[J]. Powder Technology, 2011, 214(3): 513-518. doi: 10.1016/j.powtec.2011.09.017

    CrossRef Google Scholar

    [7] BARAT S, TABATABAIE S P, SAMANI N, et al. Stabilization of iron ore tailings with cement and bentonite: a case study on golgohar mine[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(8): 4151-4166. doi: 10.1007/s10064-020-01843-6

    CrossRef Google Scholar

    [8] RESHAMA B, RAMASAMY S, NIGAMANANDA D. Synthesis of cobalt ferrite nanoparticles from waste iron ore tailings and spent lithium iron batteries for photo/sono-catalytic degradation of Congo Red[J]. Powder Technology, 2021(386): 519-527.

    Google Scholar

    [9] MENDES B C, PEDROTI L G, FONTES M P, et al. Technical and environmental assessment of the incorporation of iron ore tailings in construction clay bricks[J]. Construction and Building Materials, 2019(227): 1-13.

    Google Scholar

    [10] COURA I R, CARMIGNANO O R, HEITMANN A P, et al. Use of iron mine tailing as fillers to polyethylene[J]. Scientific Reports, 2021, 11(1): 7091-7098. doi: 10.1038/s41598-021-86456-z

    CrossRef Google Scholar

    [11] SHETTIMA A U, HUSSIN M W, et al. Evaluation of iron ore tailings as replacement for fine aggregate in concrete[J]. Construction and Building Materials, 2016(120): 72-79.

    Google Scholar

    [12] DAS S K, KUMAR S, RAMACHANDRARAO P. Exploitation of iron ore tailing for the development of ceramic tiles[J]. Waste Management, 2000, 20(8): 725-729. doi: 10.1016/S0956-053X(00)00034-9

    CrossRef Google Scholar

    [13] GALVO J L B, ANDRADE H D, BRIGOLINI G J, et al. Reuse of iron ore tailings from tailings dams as pigment for sustainable paints[J]. Journal of Cleaner Production, 2018(200): 412-422.

    Google Scholar

    [14] BEDI A, SINGH B R, DESHMUKH S K, et al. An aspergillus aculateus strain was capable of producing agriculturally useful nanoparticles via bioremediation of iron ore tailings[J]. Journal of Environmental Management, 2018(215): 100-107.

    Google Scholar

    [15] 李玉凤, 包景岭, 张锦瑞. 铁尾矿资源开发利用现状分析[J]. 中国矿业, 2015, 24(11): 12-16. doi: 10.3969/j.issn.1004-4051.2015.11.004

    CrossRef Google Scholar

    LI Y F, BAO J L, ZHANG J R. Analysis of the current development and utilization of iron tailings resources[J]. China Mining Industry, 2015, 24(11): 12-16. doi: 10.3969/j.issn.1004-4051.2015.11.004

    CrossRef Google Scholar

    [16] 舒敏, 刘昆, 李德军, 等. 铁尾矿资源化利用标准化现状及对策研究[J]. 中国标准化, 2021(11): 154-158. doi: 10.3969/j.issn.1002-5944.2021.11.022

    CrossRef Google Scholar

    SHU M, LIU K, LI D J, et al. Standardization status and countermeasures of iron tailings resource utilization[J]. Standardization in China, 2021(11): 154-158. doi: 10.3969/j.issn.1002-5944.2021.11.022

    CrossRef Google Scholar

    [17] 闫满志, 白丽梅, 张云鹏, 等. 我国铁尾矿综合利用现状问题及对策[J]. 矿业快报, 2008(7): 9-13.

    Google Scholar

    YAN M Z, BAI L M, ZHANG Y P, et al. Current situation and countermeasures of comprehensive utilization of iron tailings in China[J]. Mining Express, 2008(7): 9-13.

    Google Scholar

    [18] 顾晓薇, 张延年, 张伟峰, 等. 大宗工业固废高值建材化利用研究现状与展望[J]. 金属矿山, 2022(1): 1-12.

    Google Scholar

    GU X W, ZHANG Y N, ZHANG W F, et al. Research status and prospect of high-value building materials utilization of bulk industrial solid waste[J]. Metal Mine, 2022(1): 1-12.

    Google Scholar

    [19] 王艳辉, 盛龙, 王建臣, 等. 河北省铁尾矿的利用现状与发展方向分析[J]. 产业与科技论坛, 2015, 14(6): 86-87.

    Google Scholar

    WANG Y H, SHENG L, WANG J C, et al. Analysis of the utilization status and development direction of iron tailings in Hebei Province[J]. Industry and Technology Forum, 2015, 14(6): 86-87.

    Google Scholar

    [20] 唐艳东, 马北越, 邓承继. 铁尾矿的资源化利用研究现状[J]. 耐火与石灰, 2021, 46(6): 23-27.

    Google Scholar

    TANG Y D, MA B Y, DENG C J. Research status of resource utilization of iron tailings[J]. Fire Resistance and Lime, 2021, 46(6): 23-27.

    Google Scholar

    [21] 孟祥然, 周月鑫, 郭晓影. 铁尾矿综合利用研究综述[J]. 辽宁科技学院学报, 2019, 26(3): 12-14.

    Google Scholar

    MENG X R, ZHOU Y X, GUO X Y. Research review on the comprehensive utilization of iron tailings[J]. Journal of Liaoning University of Science and Technology, 2019, 26(3): 12-14.

    Google Scholar

    [22] CUI X W, GENG Y, LI T, et al. Field application and effect evaluation of different iron tailings soil utilization technologies[J]. Resources, Conservation and Recycling, 2021(173): 105746.

    Google Scholar

    [23] ZHAO J S, NI K, SU Y P, et al. An evaluation of iron ore tailings characteristics and iron ore tailings concrete properties[J]. Construction and Building Materials, 2021(286): 122968.

    Google Scholar

    [24] 李瑾, 倪文, 范敦城, 等. 齐大山铁尾矿工艺矿物学研究[J]. 金属矿山, 2014(1): 158-162.

    Google Scholar

    LI J, NI W, FAN D C, et al. Process mineralogy of Qidashaniron tailings[J]. Metal Mine, 2014(1): 158-162.

    Google Scholar

    [25] 侯云芬, 赵思儒, 王婧婷. 铁尾矿粉的组成及其物理性能研究[J]. 粉煤灰综合利用, 2015(2): 26-28. doi: 10.3969/j.issn.1005-8249.2015.02.007

    CrossRef Google Scholar

    HOU Y F, ZHAO S L, WANG J T. Study on the composition and physical property of iron tailings powder[J]. Comprehensive Utilization of Fly Ash, 2015(2): 26-28. doi: 10.3969/j.issn.1005-8249.2015.02.007

    CrossRef Google Scholar

    [26] 秦玉芳, 李娜, 王其伟, 等. 白云鄂博选铁尾矿稀土的工艺矿物学研究[J]. 中国稀土学报, 2021, 39(5): 796-804.

    Google Scholar

    QIN Y F, LI N, WANG Q W, et al. Process mineralogyof Bayan Obo iron tailings[J]. Chinese Journal of Rare Earth, 2021, 39(5): 796-804.

    Google Scholar

    [27] 胡神涛, 潘爱芳, 马润勇, 等. 陕西某钒钛磁铁矿选铁尾矿工艺矿物学研究[J]. 有色金属, 2021(5): 1-5.

    Google Scholar

    HU S T, PAN A F, MA R Y, et al. Process mineralogy of vanadium titanomagnetite in Shanxi[J]. Non-ferrous Metals, 2021(5): 1-5.

    Google Scholar

    [28] 唐志东, 陈国岩, 曲孔辉, 等. 鞍钢东部尾矿工艺矿物学研究[J]. 金属矿山, 2018(6): 109-113.

    Google Scholar

    TANG Z D, CHEN G Y, QU K H, et al. Process mineralogy of iron tailing at Anshan steel eastern[J]. Metal Mine, 2018(6): 109-113.

    Google Scholar

    [29] 王亚琴. 河北某铁尾矿工艺矿物学研究[J]. 现代矿业, 2018, 34(6): 151-153.

    Google Scholar

    WANG Y Q. Process mineralogy of an iron tailings in Hebei province[J]. Modern Mining, 2018, 34(6): 151-153.

    Google Scholar

    [30] 赵红星, 文娅, 胡航嘉, 等. 柞水某地铁尾矿品位偏高机制工艺矿物学研究[J]. 有色金属设计, 2020, 47(1): 1-4.

    Google Scholar

    ZHAO H X, WEN Y, HU H J, et al. Process mineralogy of high grade mechanism of some subway tailings in Zhashui[J]. Nonferrous Metal Design, 2020, 47(1): 1-4.

    Google Scholar

    [31] 陈继佳, 李文博. 含稀土萤石铁尾矿的工艺矿物学研究[J]. 中国矿业, 2022, 31(3): 67-72.

    Google Scholar

    CHEN J J, LI W B. Process mineralogy of rare earth fluorite iron tailings[J]. China Mining Industry, 2022, 31(3): 67-72.

    Google Scholar

    [32] 牛珊, 王硕. 含云母铁尾矿的工艺矿物学研究[J]. 中国金属通报, 2019(5): 50-52. doi: 10.3969/j.issn.1672-1667.2019.05.033

    CrossRef Google Scholar

    NIU S, WANG S. Process mineralogy of biotite iron tailings[J]. China Metal Bulletin, 2019(5): 50-52. doi: 10.3969/j.issn.1672-1667.2019.05.033

    CrossRef Google Scholar

    [33] 杨召群, 揣新, 张宏光, 等. 某铁矿超细碎尾矿工艺矿物学研究[J]. 现代矿业, 2019, 35(10): 135-138. doi: 10.3969/j.issn.1674-6082.2019.10.041

    CrossRef Google Scholar

    YANG Z Q, CHUAI X, ZHANG H G, et al. Process mineralogy of ultra finetailings of one iron mine[J]. Modern Mining, 2019, 35(10): 135-138. doi: 10.3969/j.issn.1674-6082.2019.10.041

    CrossRef Google Scholar

    [34] 万小金, 魏霞. 云南某铁尾矿工艺矿物学特性与选矿工艺研究[J]. 矿产综合利用, 2012(4): 39-42. doi: 10.3969/j.issn.1000-6532.2012.04.011

    CrossRef Google Scholar

    WAN X J, WEI X. Research on mineralogy and mineral process of an iron tailings in Yunnan[J]. Comprehensive Utilization of Minerals, 2012(4): 39-42. doi: 10.3969/j.issn.1000-6532.2012.04.011

    CrossRef Google Scholar

    [35] 梁冬云, 洪秋阳. 某拜尔法赤泥选铁尾矿工艺矿物学研究[J]. 金属矿山, 2011(12): 39-42.

    Google Scholar

    LIANG D Y, HONG Q Y. Process mineralogy of a bale law red mud iron tailings[J]. Metal Mine, 2011(12): 39-42.

    Google Scholar

    [36] 李晶晶, 丁益民, 陆文雄, 等. 铁尾矿的处理及其资源化利用[J]. 粉煤灰综合利用, 2012(6): 52-56. doi: 10.3969/j.issn.1005-8249.2012.06.015

    CrossRef Google Scholar

    LI J J, DING Y M, LU W X, et al. Treatment and recycling and utilization of iron tailings[J]. Comprehensive Utilization of Fly Ash, 2012(6): 52-56. doi: 10.3969/j.issn.1005-8249.2012.06.015

    CrossRef Google Scholar

    [37] 张淑会, 薛向欣, 金在峰. 我国铁尾矿的资源现状及其综合利用[J]. 材料与冶金学报, 2004(4): 241-245. doi: 10.3969/j.issn.1671-6620.2004.04.001

    CrossRef Google Scholar

    ZHANG S H, XUE X D, JIN Z F. Current situation and comprehensive utilization of iron tailings resources in China[J]. Journal of Materials and Metallurgy, 2004(4): 241-245. doi: 10.3969/j.issn.1671-6620.2004.04.001

    CrossRef Google Scholar

    [38] 易龙生, 李行, 齐莉娜, 等. 铁尾矿用于路面基层材料的研究进展及前景[J]. 矿业研究与开发, 2015, 35(10): 27-32.

    Google Scholar

    YI L S, Li XING, Q L, et al. Research progress and prospect of iron tailings for road base materials[J]. Mining Research and Development, 2015, 35(10): 27-32.

    Google Scholar

    [39] 杨茂春, 周亮, 魏清成, 等. 某残坡积铁尾矿再选流程考查及工艺优化研究[J]. 中国矿业, 2020, 29(S2): 308-311.

    Google Scholar

    YANG M C, ZHOU L, WEI Q C, et al. Research on process optimization of a residual slope iron tailings[J]. China Mining, 2020, 29(S2): 308-311.

    Google Scholar

    [40] 黄玥. 磁化焙烧-磁选工艺回收铁尾矿中铁的研究[D]. 广州: 广东工业大学, 2020.

    Google Scholar

    HUANG Y. Study on recovery of iron tails by magnetic roaking-magnetic process[D]. Guangzhou: Guangdong University of Technology, 2020.

    Google Scholar

    [41] 李素. 复配捕收剂对某铁尾矿浮选回收钛铁矿的研究[D]. 武汉: 武汉理工大学, 2020.

    Google Scholar

    LI S. Study on iron tailings with compound capture[D]. Wuhan: Wuhan University of Technology, 2020.

    Google Scholar

    [42] YI Z L, SUN H H, WEI X Q, et al. Iron ore tailings used for the preparation of cementitious material by compound thermal activation[J]. International Journal of Minerals Metallurgy and Materials, 2009, 16(3): 355-358. doi: 10.1016/S1674-4799(09)60064-9

    CrossRef Google Scholar

    [43] 吴瑞东. 石英岩型铁尾矿微粉及废石对水泥基材料的性能影响及机理[D]. 北京: 北京科技大学, 2020.

    Google Scholar

    WU R D. The influence mechanism of quartzite iron tailings powder and waste rock on cement-based materials[D]. Beijing: Beijing University of Technology and Science, 2020.

    Google Scholar

    [44] 代文彬, 王晓明, 谭皓纬, 等. 铁尾矿仿古蒸养青砖的配料工艺研究[J]. 混凝土与水泥制品, 2018(9): 47-52. doi: 10.3969/j.issn.1000-4637.2018.09.012

    CrossRef Google Scholar

    DAI W B, WANG X M, TAN H W, et al. Ingredients process of iron tailings making for antique steamed green bricks[J]. Concrete and Cement Products, 2018(9): 47-52. doi: 10.3969/j.issn.1000-4637.2018.09.012

    CrossRef Google Scholar

    [45] 潘德安, 逯海洋, 刘晓敏, 等. 高硅铁尾矿制备轻质闭孔泡沫陶瓷研究[J]. 中国陶瓷, 2020, 56(3): 51-58.

    Google Scholar

    PAN D A, LU H Y, LIU X M, et al. Research on the preparation of lightweight closed-hole foam ceramics with high-level iron silicon tailings[J]. Chinese Ceramics, 2020, 56(3): 51-58.

    Google Scholar

    [46] 代卫丽, 陈鹏飞, 朱程程. 铁尾矿制备莫来石复相陶瓷的工艺研究[J]. 商洛学院学报, 2021, 35(6): 6-12.

    Google Scholar

    DAI W L, CHEN P F, ZHU C C. Preparation of morite compound phase ceramics by iron tailings[J]. Journal of Shangluo University, 2021, 35(6): 6-12.

    Google Scholar

    [47] ZHAI J H, WANG H B, CHEN P, et al. Recycling of iron and titanium resources from early tailings: from fundamental work to industrial application[J]. Chemosphere, 2020, 24(2): 175-178.

    Google Scholar

    [48] 王广文. 铁尾矿制备烧结砖的物相转化及重金属的固化机理[D]. 广州: 广东工业大学, 2019.

    Google Scholar

    WANG G W. Phase conversion of iron tailings and curing mechanism of heavy metals[D]. Guangzhou: Guangdong University of Technology, 2019.

    Google Scholar

    [49] 李春, 韩茜, 董菁, 等. 商洛井边沟铁尾矿渣制备微晶玻璃的试验研究[J]. 矿产综合利用, 2016(1): 83-85. doi: 10.3969/j.issn.1000-6532.2016.01.019

    CrossRef Google Scholar

    LI C, HAN Q, DONG J, et al. Experimental study on preparation of microcrystalline glass in Shangluo well[J]. Comprehensive Utilization of Minerals, 2016(1): 83-85. doi: 10.3969/j.issn.1000-6532.2016.01.019

    CrossRef Google Scholar

    [50] 陈甲斌, 贾文龙, 范继涛. 铁尾矿利用经济分析模型与应用[J]. 资源科学, 2009, 31(1): 152-156. doi: 10.3321/j.issn:1007-7588.2009.01.020

    CrossRef Google Scholar

    CHEN J B, JIA W L, FAN J T. Economic analysis model and application of iron tailings using[J]. Resource Science, 2009, 31(1): 152-156. doi: 10.3321/j.issn:1007-7588.2009.01.020

    CrossRef Google Scholar

    [51] R.K. MISHRA, P.C. ROUT, K. SARANGI, et al. Solvent extraction of Fe (Ⅲ) from the chloride leach liquor of low grade iron ore tailings using aliquat 336[J]. Hydrometallurgy, 2011(108): 93-99.

    Google Scholar

    [52] PANDA L, BISWAL S K, VENUGOPAL R, et al. Investigation of the mechanism for selective flocculation process using natural iron ore tailings[J]. Metallurgical Research&Technology, 2020, 117(1): 102-107.

    Google Scholar

    [53] 蒋京航, 叶国华, 胡艺博, 等. 铁尾矿再选技术现状及研究进展[J]. 矿冶, 2018, 27(1): 1-4.

    Google Scholar

    JIANG J H, YE G H, HU Y B, et al. Current situation and research progress of iron tailings recycling technology[J]. Mining and Metallurgy, 2018, 27(1): 1-4.

    Google Scholar

    [54] 余建文, 欧杨, 曲孔辉, 等. 鞍钢东部铁尾矿悬浮磁化焙烧-磁选试验[J]. 钢铁, 2021, 56(7): 25-30.

    Google Scholar

    YU J W, OU Y, QU K H, et al. Suspended magnetization-magnetic separation test of iron tailings at Anshan steel eastern[J]. Steel, 2021, 56(7): 25-30.

    Google Scholar

    [55] 杨龙, 韩跃新, 袁致涛, 等. 梅山铁尾矿强磁再选粗精矿深度还原试验[J]. 金属矿山, 2012(7): 148-150. doi: 10.3969/j.issn.1001-1250.2012.07.040

    CrossRef Google Scholar

    YANG L, HAN Y X, YUAN Z T, et al. Depth reduction test of strong magnetic reselected crude concentrate in Meishan iron tailings[J]. Metal Mine, 2012(7): 148-150. doi: 10.3969/j.issn.1001-1250.2012.07.040

    CrossRef Google Scholar

    [56] 朱运凡, 杨波, 卢琳. 云南大红山铁尾矿再选新工艺研究[J]. 矿冶, 2012, 21(1): 35-38.

    Google Scholar

    ZHU Y F, YANG B, LU L. Research on new process of Dahongshan iron tailings in Yunnan[J]. Mining and Metallurgy, 2012, 21(1): 35-38.

    Google Scholar

    [57] 袁致涛, 马玉新, 毛卫东, 等. 马耳岭选矿厂尾矿中磁铁矿再回收试验研究[J]. 矿产保护与利用, 2014(2): 44-48.

    Google Scholar

    YUAN Z T, MA Y X, MAO W D, et al. Experimental study on magnetite recycling in tailings of malling concentrator[J]. Conservation and Utilization of Mineral Resources, 2014(2): 44-48.

    Google Scholar

    [58] 邓小龙, 李茂林, 刘旭, 等. 磁选-絮凝-反浮选从山东某铁尾矿中回收铁试验[J]. 金属矿山, 2018(6): 172-178.

    Google Scholar

    DENG X L, LI M L, LIU X, et al. Magnetic-flocculation-reverse flotation iron recovery from an iron tailings in Shandong[J]. Metal Mine, 2018(6): 172-178.

    Google Scholar

    [59] 张作金, 周振华, 韩佳宏, 等. 某超贫钒钛磁铁矿中有价元素综合回收试验研究[J]. 化工矿物与加工, 2022, 51(4): 15-18.

    Google Scholar

    ZHANG Z J, ZHOU Z H, HAN J H, et al. Experimental study on the comprehensive recovery of an ultra-poor vanadium titanomagnetite[J]. Chemical Minerals and Processing, 2022, 51(4): 15-18.

    Google Scholar

    [60] 马崇振. 用重选-磁选-反浮选法回收鞍山某尾矿中的铁[J]. 矿产保护与利用, 2021, 41(5): 111-117.

    Google Scholar

    MA C Z. Recycling iron in a tailings in Anshan by reconcentration-magnetic concentration-reverse flotation method[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 111-117.

    Google Scholar

    [61] 贺宇龙. 白云鄂博尾矿综合回收稀土、萤石、铌、钪选矿新工艺[D]. 包头: 内蒙古科技大学, 2020.

    Google Scholar

    HE Y L. New process of comprehensive recovery of rare earth, fluorite, niobium and scandium in Bayan Obo tailings[D]. Baotou: Inner Mongolia University of Science and Technology, 2020.

    Google Scholar

    [62] 王明强. 齐大山铁矿选矿厂重选尾矿回收利用研究[J]. 工程建设, 2018, 50(5): 6-10. doi: 10.3969/j.issn.1001-2206.2018.05.002

    CrossRef Google Scholar

    WANG M Q. Study on the recovery and utilization of redressing tailings in Qishan mountain iron mine concentration plant[J]. Engineering Construction, 2018, 50(5): 6-10. doi: 10.3969/j.issn.1001-2206.2018.05.002

    CrossRef Google Scholar

    [63] 袁致涛, 马玉新, 李庚辉, 等. 某铁尾矿再回收铁矿物试验研究[J]. 矿冶工程, 2016, 36(4): 37-40. doi: 10.3969/j.issn.0253-6099.2016.04.010

    CrossRef Google Scholar

    YUAN Z T, MA Y X, LI G H, et al. Experimental study on iron mineral recovery of some iron tailings[J]. Mining and Metallurgy Engineering, 2016, 36(4): 37-40. doi: 10.3969/j.issn.0253-6099.2016.04.010

    CrossRef Google Scholar

    [64] 余力, 钟晋, 刘丽芬. 云南某铁尾矿选矿试验研究[J]. 矿业工程, 2014, 12(2): 10-13. doi: 10.3969/j.issn.1671-8550.2014.02.004

    CrossRef Google Scholar

    YU L, ZHONG J, LIU L F. Study on beneficiprocessing of an iron tailings in Yunnan[J]. Mining Engineering, 2014, 12(2): 10-13. doi: 10.3969/j.issn.1671-8550.2014.02.004

    CrossRef Google Scholar

    [65] 付余. 山东某铁尾矿再选试验研究[J]. 山东化工, 2020, 49(12): 90-91. doi: 10.3969/j.issn.1008-021X.2020.12.037

    CrossRef Google Scholar

    FU Y. Experimental study on reselection of an iron tailings in Shandong[J]. Shandong Chemical Industry, 2020, 49(12): 90-91. doi: 10.3969/j.issn.1008-021X.2020.12.037

    CrossRef Google Scholar

    [66] 贺轶才. 晋南选铁尾矿的综合回收利用[J]. 黄金地质, 1998(1): 79-81.

    Google Scholar

    HE Y C. Comprehensive recycling of selected iron tailings in southern Shanxi Province[J]. Gold Geology, 1998(1): 79-81.

    Google Scholar

    [67] 郑强, 边雪, 吴文远. 盐酸浸出白云鄂博选铁尾矿中经钙化焙烧的稀土[J]. 金属矿山, 2017(5): 197-200. doi: 10.3969/j.issn.1001-1250.2017.05.039

    CrossRef Google Scholar

    ZHENG Q, BIAN X, WU W Y. Rare earth calcified baked in Bayan Obo iron tailings[J]. Metal Mine, 2017(5): 197-200. doi: 10.3969/j.issn.1001-1250.2017.05.039

    CrossRef Google Scholar

    [68] 张以河, 胡攀, 张娜, 等. 铁矿废石及尾矿资源综合利用与绿色矿山建设[J]. 资源与产业, 2019, 21(3): 1-13.

    Google Scholar

    ZHANG Y H, HU P, ZHANG N, et al. Comprehensive utilization of iron ore waste stone and tailings resources and construction of green mines[J]. Resources and Industry, 2019, 21(3): 1-13.

    Google Scholar

    [69] 李肖, 徐彪, 胡敏捷, 等. 本溪某铁尾矿制备高纯石英砂试验[J]. 现代矿业, 2018, 34(4): 106-108. doi: 10.3969/j.issn.1674-6082.2018.04.026

    CrossRef Google Scholar

    LI X, XU B, HU M J, et al. Preparation of high purity quartz sand in Benxi[J]. Modern Mining, 2018, 34(4): 106-108. doi: 10.3969/j.issn.1674-6082.2018.04.026

    CrossRef Google Scholar

    [70] 聂轶苗, 刘淑贤, 牛福生, 等. 回收承德某铁尾矿中低品位磷矿的试验研究[J]. 化工矿物与加工, 2015, 44(8): 4-7.

    Google Scholar

    NIE Y M, LIU S X, NIU F S, et al. Experimental study on the recovery of low-grade phosphate ore in some iron tailings in Chengde[J]. Chemical Mineral and Processing, 2015, 44(8): 4-7.

    Google Scholar

    [71] 霍松洋, 宋瑞杰, 罗世勇, 等. 承德某铁尾矿回收磷、钛的试验研究[J]. 世界有色金属, 2017(1): 35-36.

    Google Scholar

    HUO S Y, SONG R J, LUO S Y, et al. Experimental study on phosphorus and titanium recovery from an iron tailings in Chengde[J]. World Nonferrous Metals, 2017(1): 35-36.

    Google Scholar

    [72] 历平, 高野, 徐铜林, 等. 辽宁某铁尾矿云母选矿试验研究[J]. 中国非金属矿工业导刊, 2021(3): 53-55.

    Google Scholar

    LI P, TAKANO, XU T L, et al. Experimental study on mica beneficiation of an iron tailings mine in Liaoning province[J]. China Nonmetallic Mining Industry Guide, 2021(3): 53-55.

    Google Scholar

    [73] 许晗, 徐彪, 陈煊年. 南芬铁尾矿回收石英试验研究[J]. 矿业工程, 2017, 15(5): 21-24.

    Google Scholar

    XU H, XU B, CHEN X N. Experimental study on quartz recovery of Nanfeniron tailings[J]. Mining Engineering, 2017, 15(5): 21-24.

    Google Scholar

    [74] 刘烜, 袁波. 攀西钒钛磁铁矿尾矿利用新技术助力有价元素深度回收[J]. 中国矿山工程, 2020, 49(1): 75-76.

    Google Scholar

    LIU X, YUAN B. Panxi vanadium titanium-magnetite tailings uses new technology to help the deep recovery of valuable elements[J]. China Mining Engineering, 2020, 49(1): 75-76.

    Google Scholar

    [75] 王玉峰. 选铁尾矿回收云母选矿试验[J]. 现代矿业, 2013(6): 31-34.

    Google Scholar

    WANG Y F. Mica dressing test of iron dressing tailings recovery[J]. Modern Mining, 2013(6): 31-34.

    Google Scholar

    [76] 魏祥松. 选铁尾矿综合回收利用低品位磷、钛、钴技术工业化应用[J]. 化工矿产地质, 2010, 32(4): 238-240.

    Google Scholar

    WEI X S. Industrial application of comprehensive recovery and utilization of low-grade phosphorus, titanium and cobalt technology in iron selection tailings[J]. Chemical and Mineral Geology, 2010, 32(4): 238-240.

    Google Scholar

    [77] 路畅, 陈洪运, 傅梁杰, 等. 铁尾矿制备新型建筑材料的国内外进展[J]. 材料导报, 2021, 35(5): 5011-5026.

    Google Scholar

    LU C, CHEN H Y, FU L J, et al. Progress in the preparation of new building materials by iron tailings[J]. Material Guide, 2021, 35(5): 5011-5026.

    Google Scholar

    [78] 蔡霞. 铁尾矿用作建筑材料的进展[J]. 金属矿山, 2000(10): 45-48.

    Google Scholar

    CAI X. Progress in iron tailings used as building material[J]. Metal Mines, 2000(10): 45-48.

    Google Scholar

    [79] 潘德安, 逯海洋, 刘晓敏, 等. 高硅铁尾矿制备轻质闭孔泡沫陶瓷研究[J]. 中国陶瓷, 2020, 56(3): 51-58.

    Google Scholar

    PAN D A, LU H Y, LIU X M, et al. Research on preparation of light closed-hole foam ceramics by high-level iron silicon tailings[J]. Chinese Ceramics, 2020, 56(3): 51-58.

    Google Scholar

    [80] 杨航, 申士富, 刘海营, 等. 铁尾矿和废石制备建筑外墙防火保温陶瓷材料[J]. 矿冶, 2016, 25(6): 45-50.

    Google Scholar

    YANG H, SHEN S F, LIU H Y, et al. Iron tailings and waste stone preparation of building exterior wall fire insulation ceramic materials[J]. Mining and Metallurgy, 2016, 25(6): 45-50.

    Google Scholar

    [81] 陈盛建, 陈吉春, 高宏亮, 等. 铁尾矿制备微晶玻璃研究的进展[J]. 矿业快报, 2004(3): 27-30.

    Google Scholar

    CHEN S J, CHEN J C, GAO H L, et al. Progress in preparation of microcrystal glass[J]. Mining Express, 2004(3): 27-30.

    Google Scholar

    [82] 尹洪峰, 王明利, 任耘, 等. 利用邯郸铁矿尾矿制备轻质隔热墙体材料[J]. 金属矿山, 2006(8): 76-78.

    Google Scholar

    YIN H F, WANG M L, REN Y, et al. Preparation of light insulated wall material[J]. Metal Mine, 2006(8): 76-78.

    Google Scholar

    [83] 吕兴栋, 刘战鳌, 朱志刚, 等. 尾矿作为水泥和混凝土原材料综合利用研究进展[J]. 材料导报, 2018(2): 452-456.

    Google Scholar

    LU X D, LIU Z A, ZHU Z G, et al. Research progress in the comprehensive utilization of tailings as a raw material for cement and concrete[J]. Material Guide, 2018(2): 452-456.

    Google Scholar

    [84] YANG C M, CUI C, QIN J, et al. Characteristics of the fired bricks with low-silicon iron tailings[J]. Construction and Building Materials, 2014, 70(5): 36-42.

    Google Scholar

    [85] LI W S, LEI G Y, XU Y, et al. The properties and formation mechanisms of eco-friendly brick building materials fabricated from low-silicon iron ore tailings[J]. Journal of Cleaner Production, 2018(204): 685-692.

    Google Scholar

    [86] 贾清梅, 张锦瑞, 李凤久. 高硅铁尾矿制取蒸压尾矿砖的研究[J]. 中国矿业, 2006(4): 39-41.

    Google Scholar

    JIA Q M, ZHANG J R, LI F J. Research on making autoclaved tailing brick from high-level iron silicon tailings[J]. China Mining Industry, 2006(4): 39-41.

    Google Scholar

    [87] 王金忠, 李晖, 辛向阳. 利用铁尾矿生产烧结砖的试验研究[J]. 辽宁建材, 2000(3): 21-23.

    Google Scholar

    WANG J Z, LI H, XIN X Y. Experimental study on sintered brick production using iron tailings[J]. Liaoning Building Materials, 2000(3): 21-23.

    Google Scholar

    [88] LUO L Q, LI K Y, FU W, et al. Preparation, characteristics and mechanisms of the composite sintered bricks produced from shale, sewage sludge, coal gangue powder and iron ore tailings[J]. Construction and Building Materials, 2020(232): 1-8.

    Google Scholar

    [89] 陈永亮. 鄂西低硅铁尾矿烧结制砖及机理研究[D]. 武汉: 武汉科技大学, 2012.

    Google Scholar

    CHEN Y L. Research on the mechanism of brick sintering from low iron silicon tailings in western Hubei[D]. Wuhan: Wuhan University of Science and Technology, 2012.

    Google Scholar

    [90] 杨博宇, 张雪峰. 微波加热法制备尾矿微晶玻璃的研究[J]. 中国陶瓷, 2018, 54(2): 63-67.

    Google Scholar

    YANG B Y, ZHANG X F. Study on preparation of microcrystalline glass by microwave heating[J]. Chinese Ceramics, 2018, 54(2): 63-67.

    Google Scholar

    [91] 张锦瑞, 倪文, 王亚利. 利用铁尾矿制取微晶玻璃的研究[J]. 金属矿山, 2005(11): 72-74.

    Google Scholar

    ZHANG J R, NI W, WANG Y L. Study of microcrystalline glass by using iron tailings[J]. Metal Mine, 2005(11): 72-74.

    Google Scholar

    [92] 郭明彬. 铁尾矿试制微晶玻璃的研究[J]. 矿业快报, 2006(5): 21-23.

    Google Scholar

    GUOM B. Research on microcrystalline glass for trial production by iron tailings[J]. Mining Express, 2006(5): 21-23.

    Google Scholar

    [93] 陈吉春, 陈盛建. 低硅铁尾矿微晶玻璃成分的研究[J]. 金属矿山, 2005(5): 60-63.

    Google Scholar

    CHEN J C, CHEN S J. Study on microcrystalline glass composition of low silicon iron tailings[J]. Metal Mine, 2005(5): 60-63.

    Google Scholar

    [94] 邢军, 吕荣, 宋守志, 等. 铁尾矿微晶玻璃的组成设计与晶化研究[J]. 矿产综合利用, 2001(2): 38-42.

    Google Scholar

    XING J, LV R, SONG S Z, et al. Composition design and crystallization study of iron tailings microcrystal glass[J]. Comprehensive Utilization of Minerals, 2001(2): 38-42.

    Google Scholar

    [95] ZHANG X, AI Z, JIA F, et al. Generalized one-potsynthesis, characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres[J]. The Journal of Physica Chemistry C, 2008, 112(3): 747-753.

    Google Scholar

    [96] 陈永亮, 石磊, 杜金洋, 等. 铁尾矿轻质保温墙体材料的制备及性能研究[J]. 建筑材料学报, 2019, 22(5): 721-729.

    Google Scholar

    CHEN Y L, SHI L, DU J Y, et al. Study on the preparation and properties of iron tailings[J]. Journal of Building Materials, 2019, 22(5): 721-729.

    Google Scholar

    [97] 尹洪峰, 王明利, 任耘, 等. 利用邯郸铁矿尾矿制备轻质隔热墙体材料[J]. 金属矿山, 2006(8): 76-78.

    Google Scholar

    YIN H F, WANG M L, REN Y, et al. Preparation of light insulated wall material[J]. Metal Mine, 2006(8): 76-78.

    Google Scholar

    [98] 黎邦城, 石棋, 胡海明, 等. 程潮铁尾矿制备泡沫陶瓷的研究[J]. 中国陶瓷, 2014, 50(9): 82-86.

    Google Scholar

    LI B C, SHI Q, HU H M, et al. Research on foam ceramics preparation by Chengchao iron tailings[J]. Chinese Ceramics, 2014, 50(9): 82-86.

    Google Scholar

    [99] 郭大龙, 李宇, 艾仙斌, 等. 利用铁尾矿制备低温烧结陶瓷材料[J]. 冶金能源, 2014, 33(3): 53-57.

    Google Scholar

    GUO D L, LI Y, AI X B, et al. Preparation of low-temperature sintering ceramic materials using iron tailings[J]. Metallurgical Energy, 2014, 33(3): 53-57.

    Google Scholar

    [100] 刘晓倩, 周洋, 刘旭峰, 等. 碳热还原法制备铁尾矿多孔陶瓷的结构与性能[J]. 矿产保护与利用, 2020, 40(3): 56-63.

    Google Scholar

    LIU X Q, ZHOU Y, LIU X F, et al. Structure and properties of iron tailings porous ceramics prepared by carbon thermal reduction method[J]. Conservation and Utilization of Mineral Resources, 2020, 40(3): 56-63.

    Google Scholar

    [101] QIU J P, YANG L, SUN X G, et al. Strength characteristics and failure mechanism of cemented super-fine unclassified tailings backfill[J]. Minerals, 2017, 7(4): 58-64.

    Google Scholar

    [102] TAN Y, ZHU Y, XIAO H. Evaluation of the hydraulic, physical, and mechanical properties of perviousconcrete using iron tailings as coarse aggregates[J]. Applied Sciences, 2020, 10(8): 2691-2696.

    Google Scholar

    [103] XU X, SHU A. Research on application of iron tailings on road base[J]. Advanced Materials Research, 2013(743): 54-57.

    Google Scholar

    [104] 刘爱平, 曹苗佳, 张雄涛. 铁尾矿规模化利用研究现状及其利用途径[J]. 中国金属通报, 2019(11): 279-280.

    Google Scholar

    LIU A P, CAO M J, ZHANG X T. Research status and utilization of iron tailing[J]. China Metal Bulletin, 2019(11): 279-280.

    Google Scholar

    [105] 李恒天. 铁尾矿基充填材料研发及性能研究[D]. 济南: 山东大学, 2020.

    Google Scholar

    LI H T. Research and development and performance research of iron tailings-based filling material[D]. Jinan: Shandong University, 2020.

    Google Scholar

    [106] 张丹. 基于铅锌尾矿/铅锌冶金渣制备矿山采空区充填材料的研究[D]. 北京: 中国地质大学, 2016.

    Google Scholar

    ZHANG D. Research on the preparation of mine goaf filling materials based on lead-zinc tailings/lead-zinc metallurgical slag[D]. Beijing: China University of Geosciences, 2016.

    Google Scholar

    [107] 段圆圆. 煤基固废协同利用制备采空区充填膏体试验研究[D]. 包头: 内蒙古科技大学, 2021.

    Google Scholar

    DUAN Y Y. Study on cooperative utilization of coal-based solid waste[D]. Baotou: Inner Mongolia University of Science and Technology, 2021.

    Google Scholar

    [108] 张静文. 铁矿矿山充填采矿用胶结充填料研究[D]. 北京: 北京科技大学, 2014.

    Google Scholar

    ZHANG J W. Study on cemented packing materials for filling and mining in iron ore mines[D]. Beijing: University of Technology and Science, Beijing, 2014.

    Google Scholar

    [109] 纪宪坤, 周永祥, 杨建辉, 等. 铁尾矿全尾砂胶结充填固化剂及工程应用[J]. 新型建筑材料, 2014, 41(4): 30-33.

    Google Scholar

    JI X K, ZHOU Y X, YANG J H, et al. Iron tailings whole tailings sand cement filling curing agent and engineering application[J]. New Building Materials, 2014, 41(4): 30-33.

    Google Scholar

    [110] 张丛香, 刘润华, 刘双安, 等. 利用铁尾矿改良苏打盐碱地技术研究与应用[J]. 矿业工程, 2016, 14(1): 39-41.

    Google Scholar

    ZHANG C X, LIU R H, LIU S A, et al. Research and application of improving the soda-based saline-alkali land technology by iron tailings[J]. Mining Engineering, 2016, 14(1): 39-41.

    Google Scholar

    [111] 杨孝勇. 基于铁尾矿的新型盐碱地复合改良剂研制及应用[D]. 济南: 山东大学, 2020.

    Google Scholar

    YANG X Y. Development and application of new salt-alkali earth composite modifier based on iron tailings[D]. Jinan: Shandong University, 2020.

    Google Scholar

    [112] 牛京考, 袁怀雨, 刘保顺, 等. 矿山固体废弃物的综合利用与治理系统工程[J]. 中国矿业, 1999, 8(5): 47-49.

    Google Scholar

    NIU J K, YUAN H Y, LIU B S, et al. Comprehensive utilization and treatment system engineering of mine solid waste[J]. China Mining Industry, 1999, 8(5): 47-49.

    Google Scholar

    [113] 李丁. 缓释磁化复混肥料研制及肥效研究与应用[D]. 合肥: 安徽农业大学, 2013.

    Google Scholar

    LI D. Research and application of slow-release magnetized compound fertilizer and fertilizer efficiency[D]. Hefei: Anhui Agricultural University, 2013.

    Google Scholar

    [114] 丁文金, 李丁, 马友华, 等. 磁化复混肥料的磁化工艺及磁性稳定性研究[J]. 磷肥与复肥, 2014, 29(2): 13-15.

    Google Scholar

    DING W J, LI D, MA Y H, et al. Study on magnetization process and magnetic stability of magnetized compound fertilizer[J]. Phosphorus Fertilizer and Compound Fertilizer, 2014, 29(2): 13-15.

    Google Scholar

    [115] 许小东. 铁尾矿合成Fe-SBA-15介孔材料及性能研究[D]. 北京: 中国地质大学, 2019.

    Google Scholar

    XU X D. Study on the properties of Fe-SBA-15 mesoporous materials synthesized by iron tailings[D]. Beijing: China University of Geosciences, 2019.

    Google Scholar

    [116] DONG G, TIAN G, GONG L, et al. Mesoporous zinc silicate composites derived from iron ore tailings for highly efficient dye removal: Structure and morphology evolution[J]. Microporous and Mesoporous Materials, 2020(305): 110352.

    Google Scholar

    [117] 吕扬. 铁尾矿为原料制备介孔分子筛[D]. 沈阳: 沈阳理工大学, 2009.

    Google Scholar

    LV Y. Iron tailings as raw material to prepare mesoporous molecular sieve[D]. Shenyang: Shenyang University of Technology, 2009.

    Google Scholar

    [118] 张鹏, 李素芹, 郭鹏辉, 等. 铁尾矿两步法制备多级孔ZSM-5分子筛[J]. 工程科学学报, 2022, 44(5): 894-899.

    Google Scholar

    ZHANG P, LI S Q, GUO P H, et al. Multi-stage porous ZSM-5 molecular sieve was prepared by a two-step iron tailings method[J]. Journal of Engineering Science, 2022, 44(5): 894-899.

    Google Scholar

    [119] DENG Y X, XU X D, WANG R, et al. Characterization and photo catalytic evaluation of Fe-loaded mesoporous Mcm-41 prepared using iron and silicon sources extracted from iron ore tailing[J]. Waste and Biomass Valorization, 2020, 11(4): 1491-1498.

    Google Scholar

    [120] 孙仁东, 何百静, 谢慧东. 脱硫石膏对大掺量粉煤灰-矿渣粉干混砂浆性能的影响[J]. 中国粉体技术, 2012, 18(5): 72-76.

    Google Scholar

    SUN R D, HE B J, XIE H D. Effect of desulfurized gypsum on the performance of large mixed fly ash-slag powder dry mixed mortar[J]. China Powder Technology, 2012, 18(5): 72-76.

    Google Scholar

    [121] 李晓光, 景帅帅, 马玉平. 铁尾矿水泥砂浆的力学性能及孔结构特征[J]. 混凝土, 2014(6): 124-128.

    Google Scholar

    LI X G, JING S S, MA Y P. Mechanical properties and pore structure characteristics of iron tailings cement mortar[J]. Concrete, 2014(6): 124-128.

    Google Scholar

    [122] 路兴旺. 3D打印一次成型非承重墙体材料试验研究[D]. 沈阳: 沈阳工业大学, 2021.

    Google Scholar

    LU X W. Study on one-time non-bearing wall material for 3D printing[D]. Shenyang: Shenyang University of Technology, 2021.

    Google Scholar

    [123] 李新健. 铜/铁尾矿制备3D打印建筑材料及性能研究[D]. 北京: 中国地质大学, 2020.

    Google Scholar

    LI X J. Study on preparing 3D printed building materials and properties of copper/iron tailings[D]. Beijing: China University of Geosciences, 2020.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(2)

Article Metrics

Article views(5013) PDF downloads(431) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint