Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 3
Article Contents

REN Minghao, XIE Xian, LI Boqi, HU Shangjun, CHEN Tao, ZHU Hui, TONG Xiong. Research Progress on Comprehensive Utilization of Iron Tailings[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 155-168. doi: 10.13779/j.cnki.issn1001-0076.2022.03.022
Citation: REN Minghao, XIE Xian, LI Boqi, HU Shangjun, CHEN Tao, ZHU Hui, TONG Xiong. Research Progress on Comprehensive Utilization of Iron Tailings[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 155-168. doi: 10.13779/j.cnki.issn1001-0076.2022.03.022

Research Progress on Comprehensive Utilization of Iron Tailings

More Information
  • Iron tailings is one of the main solid waste produced in the process of iron ore development, and is also an important secondary resource. The common ways of comprehensive recovery and utilization of iron tailings resources at present are described in detail from five aspects: In terms of the recovering valuable elements, the principle of first pre-concentration and then purification is generally followed, and the combined operation of stage grinding, stage separation and a various separation technologies will be carried out to deal with the poor, fine and miscellaneous tailings. In the preparation of building materials, iron tailings can be used as fine aggregate in the concrete system or as cementitious material after activation. Under different roasting processes, it can produce clinker, vitrified brick, glass and other products. It can also be used to produce cement mortar coating and noise reduction plate filler; In terms of making filling materials, iron tailings are applied to the pavement base, subbase and subgrade filling layer after modification and grading adjustment. When they are used to prepare the filling slurry in goaf, they must meet the requirements of compressive strength and fluidity at the same time. In terms of the production of chemical products, iron tailings can be processed into water purification and adsorption materials such as ceramics and molecular sieves, which can be used to catalyze the reduction reaction of NO into N2 and the oxidation reaction of H2O2 to removal organic pollutants, and can also be used to produce pigment, white carbon black, conditioning agent and other products. In terms of agricultural products, iron tailings are suitable raw materials for soil amendment, and biotechnology is often used to realize soil formation and heavy metal solidification of iron tailings in order to realize ecological restoration in mining areas.

  • 加载中
  • [1] 张亮, 杨卉芃, 冯安生, 等. 全球铁矿资源开发利用现状及供需分析[J]. 矿产保护与利用, 2016(6): 57-63.

    Google Scholar

    ZHANG L, YANG H P, FENG A S, et al. Development, utilization status, supply and demand analysis of global iron ore resources[J]. Conservation and Utilization of Mineral Resources, 2016(6): 57-63.

    Google Scholar

    [2] 王海军, 王伊杰, 李文超, 等. 全国矿产资源节约与综合利用报告(2019)[J]. 中国国土资源经济, 2020, 33(2): 2.

    Google Scholar

    WANG H J, WANG Y J, LI W C, et al. National mineral resources conservation and comprehensive utilization report (2019)[J]. China Land and Resources Economy, 2020, 33(2): 2.

    Google Scholar

    [3] 姜雪薇. 中国铁矿行业发展现状及前景分析[J]. 中国金属通报, 2017(7): 160-161.

    Google Scholar

    JIANG X W. Analysis on development status and prospect of Chinese iron ore industry[J]. China Metal Bulletin, 2017(7): 160-161.

    Google Scholar

    [4] ZHAN G X, YANG H H, CUI Z J. Evaluation and analysis of soil migration and distribution characteristics of heavy metals in iron tailings[J]. Journal of Cleaner Production, 2018, 172: 475-480. doi: 10.1016/j.jclepro.2017.09.277

    CrossRef Google Scholar

    [5] 张家荣, 刘建林. 中国尾矿库溃坝与泄露事故统计及成因分析[J]. 中国钼业, 2019, 43(4): 10-14.

    Google Scholar

    ZHANG J R, LIU J L. Statistics and cause analysis of dam break and leakage accidents of tailings ponds in China[J]. China Molybdenum Industry, 2019, 43(4): 10-14.

    Google Scholar

    [6] 杨永浩, 魏作安, 陈宇龙, 等. 基于图像处理技术的尾矿颗粒形态研究[J]. 岩石力学与工程学报, 2017, 36(1): 3689-3695.

    Google Scholar

    YANG Y H, WEI Z A, CHEN Y L, et al. Study on particle morphology of tailings based on image processing technology[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1): 3689-3695.

    Google Scholar

    [7] 蒋京航, 叶国华, 胡艺博, 等. 铁尾矿再选技术现状及研究进展[J]. 矿冶, 2018, 27(1): 1-4.

    Google Scholar

    JIANG J H, YE G H, HU Y B, ZHANG S M. Current status and research progress of iron tailings recycling technology[J]. Mining and Metallurgy, 2018, 27(1): 1-4.

    Google Scholar

    [8] 邓小龙, 李茂林, 刘旭, 等. 磁选-絮凝-反浮选从山东某铁尾矿中回收铁试验[J]. 金属矿山, 2018(6): 172-178.

    Google Scholar

    DENG X L, LI M L, LIU X, et al. Iron recovery from an iron tailings by magnetic separation-flocculation-reverse flotation in Shandong province[J]. Metal Mine, 2018(6): 172-178.

    Google Scholar

    [9] 蒋曼, 李俊达, 张乐, 等. 硫酸渣煤基直接还原焙烧制备直接还原铁[J]. 矿产保护与利用, 2019, 221(3): 58-62.

    Google Scholar

    JIANG M, LI J D, ZHANG L, et al. Preparation of direct reduced iron from sulfuric acid slag by coal-based direct reduction roasting[J]. Conservation and Utilization of Mineral Resources, 2019, 221(3): 58-62.

    Google Scholar

    [10] 范敦城. 齐大山铁尾矿预富集-深度还原提铁及尾渣综合利用研究[D]. 北京: 北京科技大学, 2018.

    Google Scholar

    FAN D C. Research on comprehensive utilization of iron tailings from Qidashan iron preconcentration and deep reduction[D]. Beijing: University of Science and Technology Beijing, 2018.

    Google Scholar

    [11] 王洪阳, 包焕均, 张文韬, 等. 铁橄榄石的氧化分解及碱浸溶硅[J]. 金属矿山, 2020(10): 167-173.

    Google Scholar

    WANG H Y, BAO H J, ZHANG W T, et al. Oxidation decomposition of iron olivine and alkaline leaching of silicon[J]. Metal Mine, 2020(10): 167-173.

    Google Scholar

    [12] WANG H Y, SONG S X. Separation of silicon and iron in copper slag by carbothermic reduction-alkali leaching process[J]. Journal of Central South University, 2020, 27(8): 2249-2258. doi: 10.1007/s11771-020-4446-3

    CrossRef Google Scholar

    [13] 钟森林, 张超达, 吴城材, 等. 某磁铁矿尾矿中镜铁矿回收试验研究[J]. 铜业工程, 2019(3): 40-42+45. doi: 10.3969/j.issn.1009-3842.2019.03.012

    CrossRef Google Scholar

    ZHONG S L, ZHANG C D, WU C C, et al. Experimental study on recovery of specularite from magnetite tailings[J]. Copper Engineering, 2019(3): 40-42+45. doi: 10.3969/j.issn.1009-3842.2019.03.012

    CrossRef Google Scholar

    [14] 付余. 山东某铁尾矿再选试验研究[J]. 山东化工, 2020, 49(12): 90-91. doi: 10.3969/j.issn.1008-021X.2020.12.037

    CrossRef Google Scholar

    FU Y. Experimental study on reselection of an iron tailings in Shandong[J]. Shandong Chemical Industry, 2020, 49(12): 90-91. doi: 10.3969/j.issn.1008-021X.2020.12.037

    CrossRef Google Scholar

    [15] 李奕然, 叶国华, 朱冰龙, 等. 选择性分散絮凝-磁选工艺回收云南上厂铁尾矿中的铁[J]. 矿产保护与利用, 2018(2): 63-68.

    Google Scholar

    LI Y R, YE G H, ZHU B L, et al. Selectively dispersed flocculation-magnetic separation process to recover iron in Yunnan Shang factory iron tailings[J]. Conservation and Utilization of Mineral Resources, 2018(2): 63-68.

    Google Scholar

    [16] 李小娜. 悬振选矿机在弓长岭选矿厂铁尾矿再选中的应用[J]. 矿产综合利用, 2016(3): 80-82. doi: 10.3969/j.issn.1000-6532.2016.03.019

    CrossRef Google Scholar

    LI X N. Application of suspension concentrator in Gongchangling Concentration Plant[J]. Multipurpose Utilization of Mineral Resources, 2016(3): 80-82. doi: 10.3969/j.issn.1000-6532.2016.03.019

    CrossRef Google Scholar

    [17] 张以河, 胡攀, 张娜, 等. 铁矿废石及尾矿资源综合利用与绿色矿山建设[J]. 资源与产业, 2019, 21(3): 1-13.

    Google Scholar

    ZHANG Y H, HU P, ZHANG N, et al. Comprehensive utilization of iron ore waste stone and tailings resources and construction of green mine[J]. Resources & Industry, 2019, 21(3): 1-13.

    Google Scholar

    [18] 邱凯. 攀枝花微细粒钛铁尾矿再选新工艺研究[D]. 昆明: 昆明理工大学, 2018.

    Google Scholar

    QIU K. Research on new process of titanium iron tailings in Panzhihua[D]. Kunming: Kunming University of Science and Technology, 2018.

    Google Scholar

    [19] ZHAI J H, WANG H B, CHE N P, et al. Recycling of iron and titanium resources from early tailings: from fundamental work to industrial application[J]. Chemosphere, 2020, 242: 125178. doi: 10.1016/j.chemosphere.2019.125178

    CrossRef Google Scholar

    [20] 秦玉芳, 李娜, 马莹, 等. 白云鄂博选铁尾矿优先浮选稀土试验研究[J]. 矿冶, 2021, 30(1): 32-37. doi: 10.3969/j.issn.1005-7854.2021.01.007

    CrossRef Google Scholar

    QIN Y F, LI N, MA Y, et al. Experimental study on preferential flotation of rare earth from iron tailings in Bayan Obo[J]. Mining and Metallurgy, 2021, 30(1): 32-37. doi: 10.3969/j.issn.1005-7854.2021.01.007

    CrossRef Google Scholar

    [21] KURSUNOGLU SAIT, TOP SONER, KAYA MUAMMER. Recovery of zinc and lead from Yahyali non-sulphide flotation tailing by sequential acidic and sodium hydroxide leaching in the presence of potassium sodium tartrate[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(12): 3367-3378. doi: 10.1016/S1003-6326(20)65468-1

    CrossRef Google Scholar

    [22] 李日文, 蔡海立, 宁寻安, 等. CaCl2氯化焙烧分离铁尾矿中的重金属铅铜镉[J]. 环境工程学报, 2021, 15(3): 1083-1091.

    Google Scholar

    LI R W, CAI H L, NING X A, et al. Separation of heavy metals lead, copper and cadmium in iron tailings by chlorination roasting with CaCl2[J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 1083-1091.

    Google Scholar

    [23] ZHOU Y, LIU J X, CHENG G J, et al. Carbothermal reduction followed by sulfuric acid leaching of Bayan Obo tailings for selective concentration of iron and rare earth metals[J]. Separation and Purification Technology, 2021, 271: 118742. doi: 10.1016/j.seppur.2021.118742

    CrossRef Google Scholar

    [24] 李继福, 衷水平, 黄雄, 等. 某选铁尾矿中钼的综合回收试验研究[J]. 中国矿业, 2020, 29(3): 115-119.

    Google Scholar

    LI J F, ZHONG S P, HUANG X, et al. Study on the comprehensive recovery of molybdenum in an iron selected tailings[J]. China Mining, 2020, 29(3): 115-119.

    Google Scholar

    [25] 夏青, 梁治安, 杨秀丽, 等. 某选铁尾矿中低品位钼、锌分选回收试验研究[J]. 有色金属工程, 2020, 10(5): 81-88. doi: 10.3969/j.issn.2095-1744.2020.05.015

    CrossRef Google Scholar

    XIA Q, LIANG Z A, YANG X L, et al. Experimental study on low grade molybdenum and zinc sorting in an iron tailings[J]. Nonferrous Metals Engineering, 2020, 10(5): 81-88. doi: 10.3969/j.issn.2095-1744.2020.05.015

    CrossRef Google Scholar

    [26] 包玺琳, 柏亚林, 杨俊龙, 等. 秘鲁某高硫选铁尾矿综合回收铜铁金银新工艺试验研究[J]. 中国矿业, 2022, 31(1): 153-159.

    Google Scholar

    BAO X L, BAI Y L, YANG J L, et al. Experimental research on new comprehensive recovery of copper and silver from a high sulfur iron preparation tailings in Peru[J]. China Mining, 2022, 31(1): 153-159.

    Google Scholar

    [27] AHMED YEHIA, SAWSANABD EL-HALIM, HAYAT SHARADA, et al. Application of a fungal cellulase as a green depressant of hematite in the reverse anionic flotation of a high-phosphorus iron ore[J]. Minerals Engineering, 2021, 167: 106903. doi: 10.1016/j.mineng.2021.106903

    CrossRef Google Scholar

    [28] 张作金, 周振华, 吴天来, 等. 组合捕收剂回收某铁尾矿中的磷[J]. 矿产保护与利用, 2021, 41(2): 112-116.

    Google Scholar

    ZHANG Z J, ZHOU Z H, WU T L, et al. Recovery of phosphorus from iron tailings with combined collectors[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 112-116.

    Google Scholar

    [29] 吕昊子. 大红山铁尾矿中微细粒云母资源的高效分选及理论研究[D]. 昆明: 昆明理工大学, 2017.

    Google Scholar

    LV H Z. Efficient sorting and theoretical study of fine-grained mica resources in Dahongshan iron tailings[D]. Kunming: Kunming University of Science and Technology, 2017.

    Google Scholar

    [30] 许晗, 徐彪, 陈煊年. 南芬铁尾矿回收石英试验研究[J]. 矿业工程, 2017, 15(5): 21-24.

    Google Scholar

    XU H, XU B, CHEN X N. Experimental study on the recovery of quartz from Nanfen iron tailings[J]. Mining Engineering, 2017, 15(5): 21-24.

    Google Scholar

    [31] KLAYDISON SILVA, LEV O FILIPPOV, ALEXANDRE PIÇARRA, et al. New perspectives in iron ore flotation: use of collector reagents without depressants in reverse cationic flotation of quartz[J]. Minerals Engineering, 2021, 170: 107004. doi: 10.1016/j.mineng.2021.107004

    CrossRef Google Scholar

    [32] LI M Y, XIONG Y H, CHEN T J, et al. Separation of ultra-fine hematite and quartz particles using asynchronous flocculation flotation[J]. Minerals Engineering, 2021, 164: 106817. doi: 10.1016/j.mineng.2021.106817

    CrossRef Google Scholar

    [33] 仝宵, 王社良. 铁尾矿砂再生骨料混凝土力学性能及微观结构分析[J]. 混凝土, 2021(1): 91-93+97.

    Google Scholar

    TONG X, WANG S L. Mechanical properties and microstructure analysis of iron tailings recycled aggregate concrete[J]. Concrete, 2021(1): 91-93+97.

    Google Scholar

    [34] 赵阳. 鞍山式铁尾矿制备耐盐碱建筑用砖的研究[D]. 唐山: 华北理工大学, 2017.

    Google Scholar

    ZHAO Y. Research on the preparation of salt-alkali-resistant building bricks from Anshan-type iron tailings[D]. Tangshan: North China University of Science and Technology, 2017.

    Google Scholar

    [35] 李萌, 周庆立, 白丽梅, 等. 机械力化学效应提高铁尾矿活性试验研究[J]. 矿产综合利用, 2021(1): 179-185. doi: 10.3969/j.issn.1000-6532.2021.01.030

    CrossRef Google Scholar

    LI M, ZHOU Q L, BAI L M, et al. Experimental study on improving the activity of iron tailings by mechanochemical effect[J]. Multipurpose Utilization of Mineral Resources, 2021(1): 179-185. doi: 10.3969/j.issn.1000-6532.2021.01.030

    CrossRef Google Scholar

    [36] 朴春爱, 王栋民, 张力冉, 等. 化学-机械耦合效应对铁尾矿粉胶凝活性的影响[J]. 应用基础与工程科学学报, 2016, 24(6): 1100-1109.

    Google Scholar

    PU C A, WANG D M, ZHANG L R, et al. Effects of chemical-mechanical coupling effect on the gelation activity of iron tailings powder[J]. Journal of Basic Sciences and Engineering, 2016, 24(6): 1100-1109.

    Google Scholar

    [37] LUCIANO FERNANDES DE MAGALHÃES, SÂMARAFRANÇA, MICHELLY DOS SANTOS OLIVEIRA, et al. Iron ore tailings as a supplementary cementitious material in the production of pigmented cements[J]. Journal of Cleaner Production, 2020, 274: 123260. doi: 10.1016/j.jclepro.2020.123260

    CrossRef Google Scholar

    [38] ZHANG N, TANG B W, LIU X M. Cementitious activity of iron ore tailing and its utilization in cementitious materials, bricks and concrete[J]. Construction and Building Materials, 2021, 288: 123022. doi: 10.1016/j.conbuildmat.2021.123022

    CrossRef Google Scholar

    [39] LI H N, LIU P F, LI C, et al. Experimental research on dynamic mechanical properties of metal tailings porous concrete[J]. Construction and Building Materials, 2019, 213: 20-31. doi: 10.1016/j.conbuildmat.2019.04.049

    CrossRef Google Scholar

    [40] LUO J L, HOU D S, Li Q Y, et al. Comprehensive performances of carbon nanotube reinforced foam concrete with tetraethyl orthosilicate impregnation[J]. Construction & Building Materials, 2017, 131(30): 512-516.

    Google Scholar

    [41] 陈飞旭. 铁尾矿/粉煤灰/EPS颗粒/气凝胶复合保温材料研究[D]. 北京: 中国地质大学, 2019.

    Google Scholar

    CHEN FX. Research on composite thermal insulation materials of iron tailings fly ash EPS particles aerogel[D]. Beijing: China University of Geosciences, 2019.

    Google Scholar

    [42] 黎洁, 谢贤, 李博琦, 等. 地质聚合物研究进展[J]. 矿产保护与利用, 2020, 40(6): 141-148.

    Google Scholar

    LI J, XIE X, LI B Q, et al. Research progress of geopolymers[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 141-148.

    Google Scholar

    [43] 康博文. 尾矿基地质聚合物的制作及其对重金属离子的固化研究[D]. 昆明: 昆明理工大学, 2020.

    Google Scholar

    KANG B W. Preparation of tailings base geopolymer and its solidification of heavy metal ions[D]. Kunming: Kunming University of Science and Technology, 2020.

    Google Scholar

    [44] 邓兆祥, 王晓伟, 贾铭椿. 地质聚合物固化重金属研究进展[J]. 现代化工, 2021, 41(11): 77-81. doi: 10.12361/2661-3670-03-11-39

    CrossRef Google Scholar

    DENG Z X, WANG X W, JIA M C. Research progress on the solidification of heavy metals in geopolymers[J]. Modern Chemical Industry, 2021, 41(11): 77-81. doi: 10.12361/2661-3670-03-11-39

    CrossRef Google Scholar

    [45] WANG G W, NING X A, LU X W, et al. Effect of sintering temperature on mineral composition and heavy metals mobility in tailings bricks[J]. Waste Management, 2019, 93: 112-121. doi: 10.1016/j.wasman.2019.04.001

    CrossRef Google Scholar

    [46] 陈永亮. 鄂西低硅铁尾矿烧结制砖及机理研究[D]. 武汉: 武汉科技大学, 2012.

    Google Scholar

    CHEN Y L. Research on sintering and mechanism of low-silicon iron tailings in western Hubei to make bricks[D]. Wuhan: Wuhan University of Science and Technology, 2012.

    Google Scholar

    [47] 徐庆荣. 利用铁尾矿烧制硅酸盐水泥熟料[J]. 现代矿业, 2018, 34(5): 165-168. doi: 10.3969/j.issn.1674-6082.2018.05.034

    CrossRef Google Scholar

    XU Q R. Using iron tailings to produce portland cement clinker[J]. Modern Mining, 2018, 34(5): 165-168. doi: 10.3969/j.issn.1674-6082.2018.05.034

    CrossRef Google Scholar

    [48] 罗力. 利用铁尾矿制备硅酸盐水泥熟料的试验研究[D]. 武汉: 武汉理工大学, 2016.

    Google Scholar

    LUO L. Experimental study on preparation of portland cement clinker from iron tailings[D]. Wuhan: Wuhan University of Technology, 2016.

    Google Scholar

    [49] YOUNG G, MEI YANG. Preparation and characterization of portland cement clinker from iron ore tailings[J]. Construction and Building Materials, 2019, 197: 152-156. doi: 10.1016/j.conbuildmat.2018.11.236

    CrossRef Google Scholar

    [50] 吴俊权, 马晶, 汪应玲, 等. 高硅铁尾矿制备陶粒工艺试验研究[J]. 矿产保护与利用, 2020, 40(6): 126-132.

    Google Scholar

    WU J Q, MA J, WANG Y L, et al. Experimental study on the preparation of ceramsite from high-silicon iron tailings[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 126-132.

    Google Scholar

    [51] 李晓光, 侯鑫鑫, 梁保真, 等. 铁尾矿陶粒混凝土的制备与性能分析[J]. 硅酸盐通报, 2021, 40(3): 929-935.

    Google Scholar

    LI X G, HOU X X, LIANG B Z, et al. Preparation and performance analysis of iron tailings ceramsite concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(3): 929-935.

    Google Scholar

    [52] 孟宪昊. 隔墙板用铁尾矿多孔陶瓷及其复合相变材料的制备与性能研究[D]. 北京: 北京交通大学, 2020.

    Google Scholar

    MENG X H. Preparation and properties of iron tailings porous ceramics and their composite phase change materials for partition panels[D]. Beijing: Beijing Jiaotong University, 2020.

    Google Scholar

    [53] 李润丰. 铁尾矿多孔陶瓷/石蜡复合相变储能材料的制备与性能研究[D]. 北京: 北京交通大学, 2019.

    Google Scholar

    LI R F. Preparation and properties of iron tailings porous ceramic/paraffin composite phase change energy storage materials[D]. Beijing: Beijing Jiaotong University, 2019.

    Google Scholar

    [54] 刘晓倩, 周洋, 刘旭峰, 等. 碳热还原法制备铁尾矿多孔陶瓷的结构与性能[J]. 矿产保护与利用, 2020, 40(3): 56-63.

    Google Scholar

    LIU X Q, ZHOU Y, LIU X F, et al. Structure and properties of iron tailings porous ceramics prepared by carbothermal reduction[J]. Conservation and Utilization of Mineral Resources, 2020, 40(3): 56-63.

    Google Scholar

    [55] 隋延力, 王继全, 杨芳, 等. 国内铁尾矿制备陶瓷玻化砖的研究现状及问题分析[J]. 金属矿山, 2014(1): 177-180.

    Google Scholar

    SUI Y L, WANG J Q, YANG F, et al. Research status and problem analysis of ceramic vitrified bricks prepared from iron tailings in China[J]. Metal Mines, 2014(1): 177-180.

    Google Scholar

    [56] 马子钧. 利用硅酸盐工业废(尾)矿制备发泡陶瓷的研究[D]. 北京: 北京工业大学, 2019.

    Google Scholar

    MA Z J. Research on the preparation of foamed ceramics from silicate industrial waste (tailings)[D]. Beijing: Beijing University of Technology, 2019.

    Google Scholar

    [57] 王明. 铁尾矿黑色微晶玻璃制备工艺概述[J]. 现代矿业, 2020, 36(6): 252-254. doi: 10.3969/j.issn.1674-6082.2020.06.069

    CrossRef Google Scholar

    WANG M. An overview of the preparation process of iron tailings black glass-ceramic[J]. Modern Mining, 2020, 36(6): 252-254. doi: 10.3969/j.issn.1674-6082.2020.06.069

    CrossRef Google Scholar

    [58] 马明鑫. 铁尾矿泡沫玻璃制备及添加量研究[D]. 西安: 陕西科技大, 2017.

    Google Scholar

    MA M X. Preparation and addition of iron tailings foam glass[D]. Xi'an: Shaanxi University of Science and Technology, 2017.

    Google Scholar

    [59] 孙强强, 杨文凯, 李兆, 等. 利用铁尾矿制备微晶泡沫玻璃的热处理工艺研究[J]. 矿产保护与利用, 2020, 40(3): 69-74.

    Google Scholar

    SUN Q Q, YANG W K, LI Z, et al. Study on heat treatment process of microcrystalline foam glass prepared from iron tailings[J]. Conservation and Utilization of Mineral Resources, 2020, 40(3): 69-74.

    Google Scholar

    [60] MORAIS C F, BELO B R, BEZERRA A C S, et al. Thermal and mechanical analyses of colored mortars produced using Brazilian iron ore tailings[J]. Construction and Building Materials, 2020, 268: 121073.

    Google Scholar

    [61] 吕绍伟, 姜屏, 钱彪, 等. 铁尾矿砂力学特性及再生利用研究进展[J]. 硅酸盐通报, 2020, 39(2): 466-470+512.

    Google Scholar

    LV S W, JIANG P, QIAN B, et al. Research progress on mechanical properties and recycling of iron tailings[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(2): 466-470+512.

    Google Scholar

    [62] 王营, 顾晓薇, 张延年, 等. 铁尾矿砂水泥砂浆抗压强度及微观结构分析[J]. 金属矿山, 2022(1): 60-64.

    Google Scholar

    WANG Y, GU X W, ZHANG Y N, et al. Compressive strength and microstructure analysis of iron tailings sand cement mortar[J]. Metal Mining, 2022(1): 60-64.

    Google Scholar

    [63] 胡倩倩. 核壳结构苯丙聚合物改性防水砂浆的研究[D]. 石家庄: 河北科技大学, 2015.

    Google Scholar

    HU Q Q. Research on core-shell structure styrene-acrylic polymer modified waterproof mortar[D]. Shijiazhuang: Hebei University of Science and Technology, 2015.

    Google Scholar

    [64] 贺艳军, 张金山, 石占山, 等. 羟丙基甲基纤维素改善铁尾矿砂砂浆的性能[J]. 非金属矿, 2020, 43(6): 30-32.

    Google Scholar

    HE Y J, ZHANG J S, SHI Z S, et al. Hydroxypropyl methyl cellulose improves the properties of iron tailings mortar[J]. Non-metallic Minerals, 2020, 43(6): 30-32.

    Google Scholar

    [65] 熊哲. 铁矿尾矿砂填充颗粒的阻尼和隔声性能的研究[D]. 南昌: 南昌航空大学, 2016.

    Google Scholar

    XIONG Z. Research on the damping and sound insulation performance of iron ore tailings sand filled particles[D]. Nanchang: Nanchang Aviation University, 2016.

    Google Scholar

    [66] 李明俊, 石春华. 微纳铁尾矿砂吸隔声板的制备及其影响因素分析[J]. 安全与环境学报, 2021, 21(2): 787-793.

    Google Scholar

    LI M J, SHI C H. Preparation of micro-nano iron tailings sand sound absorption and sound insulation board and analysis of its influencing factors[J]. Journal of Safety and Environment, 2021, 21(2): 787-793.

    Google Scholar

    [67] 常宁. 钒钛磁铁尾矿复合胶凝材料制备隔声板材的研究[D]. 邯郸: 河北工程大学, 2020.

    Google Scholar

    CHANG N. Research on the preparation of sound-insulating panels from vanadium-titanium-magnetite tailings composite cementitious materials[D]. Handan: Hebei University of Engineering, 2020.

    Google Scholar

    [68] 肖涛. 铁尾矿砂复合板的非柱形孔吸隔声性能研究[D]. 南昌: 南昌航空大学, 2017.

    Google Scholar

    XIAO T. Research on the sound absorption and insulation performance of non-cylindrical holes of iron tailings sand composite panels[D]. Nanchang: Nanchang Aeronautical University, 2017.

    Google Scholar

    [69] 罗森华. 黏性土改良铁尾矿砂的路用性能研究[J]. 福建交通科技, 2021(2): 25-30.

    Google Scholar

    LUO S H. Research on road performance of iron tailings sand improved by clay soil[J]. Fujian Communications Science and Technology, 2021(2): 25-30.

    Google Scholar

    [70] 丁玉江. 改性铁尾砂混合料于道路基层中的应用研究[D]. 马鞍山: 安徽工业大学, 2020.

    Google Scholar

    DING Y J. Application of modified iron tailings mixture in road base[D]. Ma'anshan: Anhui University of Technology, 2020.

    Google Scholar

    [71] 王绪旺. 无机结合料处治铁尾矿渣路用水稳定性试验研究[J]. 粉煤灰综合利用, 2020, 34(3): 59-62+95. doi: 10.3969/j.issn.1005-8249.2020.03.012

    CrossRef Google Scholar

    WANG X W. Experimental study on road water stability of iron tailings slag treated with inorganic binders[J]. Fly Ash Comprehensive Utilization, 2020, 34(3): 59-62+95. doi: 10.3969/j.issn.1005-8249.2020.03.012

    CrossRef Google Scholar

    [72] 赵飞, 李桂英, 张会芳, 等. 固化剂改良铁尾矿无侧限抗压强度试验研究[J]. 河北建筑工程学院学报, 2021, 39(1): 50-53. doi: 10.3969/j.issn.1008-4185.2021.01.009

    CrossRef Google Scholar

    ZHAO F, LI G Y, ZHANG H F, et al. Experimental study on unconfined compressive strength of iron tailings improved by curing agent[J]. Journal of Hebei Institute of Architecture and Civil Engineering, 2021, 39(1): 50-53. doi: 10.3969/j.issn.1008-4185.2021.01.009

    CrossRef Google Scholar

    [73] 仉健. 固化剂改良铁尾矿路用耐久性能试验研究[D]. 张家口: 河北建筑工程学院, 2020.

    Google Scholar

    ZHANG J. Experimental study on road durability performance of iron tailings improved by curing agent[D]. Zhangjiakou: Hebei University of Architecture, 2020.

    Google Scholar

    [74] 刘晶磊, 仉健, 温孟瑶, 等. 冻融循环作用对固化改良铁尾矿抗压强度的影响试验研究[J]. 中外公路, 2020, 40(6): 262-266.

    Google Scholar

    LIU J L, ZHANG J, WEN M Y, et al. Experimental study on the effect of freeze-thaw cycles on the compressive strength of solidified and improved iron tailings[J]. Journal of China & Foreign Highway, 2020, 40(6): 262-266.

    Google Scholar

    [75] 刘晶磊, 仉健, 薛晓峰, 等. 干湿循环作用下改良铁尾矿强度特性试验研究[J]. 公路, 2019, 64(7): 25-31.

    Google Scholar

    LIU J L, ZHANG J, XUE X F, et al. Experimental study on strength characteristics of improved iron tailings under the action of dry-wet cycle[J]. Highway, 2019, 64(7): 25-31.

    Google Scholar

    [76] 张宝虎, 余天航, 韩先瑞, 等. 铁尾矿砂石骨料沥青混凝土性能研究[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43(3): 481-485. doi: 10.3963/j.issn.2095-3844.2019.03.021

    CrossRef Google Scholar

    ZHANG B H, YU T H, HAN X R, et al. Research on the performance of iron tailings sand-gravel aggregate asphalt concrete[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering Edition), 2019, 43(3): 481-485. doi: 10.3963/j.issn.2095-3844.2019.03.021

    CrossRef Google Scholar

    [77] 田知文. 铁尾矿沥青混合料性能评价及改善措施研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    Google Scholar

    TIAN Z W. Research on performance evaluation and improvement measures of iron tailings asphalt mixture[D]. Harbin: Harbin Institute of Technology, 2018.

    Google Scholar

    [78] 曹丽萍, 张晓亢, 杨晨, 等. 基于分子动力学的硅烷偶联剂对铁尾矿沥青混合料改性的机理[J]. 中南大学学报(自然科学版), 2021, 52(7): 2276-2286.

    Google Scholar

    CAO L P, ZHANG X K, YANG C, et al. The mechanism of modification of iron tailings asphalt mixture by silane coupling agent based on molecular dynamics[J]. Journal of Central South University (Nature Science), 2021, 52(7): 2276-2286.

    Google Scholar

    [79] 邹宗民, 苏纪壮, 汲平, 等. 铁尾矿对微表处混合料耐久性影响研究[J/OL]. 武汉理工大学学报(交通科学与工程版), 2021.

    Google Scholar

    ZOU Z M, SU J Z, JI P, et al. Study on the effect of iron tailings on the durability of micro-surface mixtures[J/OL]. Journal of Wuhan University of Technology (Transportation Science and Engineering Edition), 2021.

    Google Scholar

    [80] 李恒天. 铁尾矿基充填材料研发及性能研究[D]. 济南: 山东大学, 2020.

    Google Scholar

    LI H T. Research and development and performance research of iron tailings-based filling materials[D]. Ji'nan: Shandong University, 2020.

    Google Scholar

    [81] WEI D Y, DU C F, LIN Y F, et al. Impact factors of hydration heat of cemented tailings backfill based on multi-index optimization[J]. Case Studies in Thermal Engineering, 2020, 18: 100601. doi: 10.1016/j.csite.2020.100601

    CrossRef Google Scholar

    [82] 魏晓明. 高阶段全尾砂胶结充填体强度特性及充填体配比设计研究[D]. 北京: 北京科技大学, 2018.

    Google Scholar

    WEI X M. Research on the strength characteristics of high-stage full tailings cemented backfill and the design of backfill ratio[D]. Beijing: University of Science and Technology Beijing, 2018.

    Google Scholar

    [83] 杨晓炳. 低品质多固废协同制备充填料浆及其管输阻力研究[D]. 北京: 北京科技大学, 2020.

    Google Scholar

    YANG X B. Synergistic preparation of filling slurry with low-quality multi-solid waste and its pipeline resistance[D]. Beijing: University of Science and Technology Beijing, 2020.

    Google Scholar

    [84] YUZE WANG, KENICHI SOGA, JASON T. DE JONG, et al. Microscale visualization of microbial-induced calcium carbonate precipitation processes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019045. doi: 10.1061/(ASCE)GT.1943-5606.0002079

    CrossRef Google Scholar

    [85] QIU J P, XIONG J C, ZHANG W Q, et al. Effect of microbial-cemented on mechanical properties of iron tailings backfill and its mechanism analysis[J]. Construction and Building Materials, 2022, 318: 126001. doi: 10.1016/j.conbuildmat.2021.126001

    CrossRef Google Scholar

    [86] THANDIEVERONICAH SIMA, MOATLHODI WISE LETSHWENYO, LESEDI LEBOGANG. Efficiency of waste clinker ash and iron oxide tailings for phosphorus removal from tertiary wastewater: Batch studies[J]. Environmental Technology&Innovation, 2018(11): 49-63.

    Google Scholar

    [87] LI P W, LUO S H, ZHANG L, et al. Study on preparation and performance of iron tailings-based porous ceramsite filter materials for water treatment[J]. Separation and Purification Technology, 2021, 276: 119380. doi: 10.1016/j.seppur.2021.119380

    CrossRef Google Scholar

    [88] 杜熠. 微生物载体高硅铁尾矿基多孔陶粒孔结构调控及生物效应研究[D]. 天津: 河北工业大学, 2019.

    Google Scholar

    DU Y. Study on pore structure regulation and biological effect of microbial carrier high-silicon iron tailings-based porous ceramsite[D]. Tianjin: Hebei University of Technology, 2019.

    Google Scholar

    [89] XU C L, FENG Y L, LI H R, et al. Adsorption of heavy metal ions by iron tailings: behavior, mechanism, evaluation and new perspectives[J]. Journal of Cleaner Production, 2022, 344: 131065. doi: 10.1016/j.jclepro.2022.131065

    CrossRef Google Scholar

    [90] LU C, YANG H M, WANG J, et al. Utilization of iron tailings to prepare high-surface area mesoporous silica materials[J]. Science of the Total Environment, 2020, 736: 139483. doi: 10.1016/j.scitotenv.2020.139483

    CrossRef Google Scholar

    [91] 许小东. 铁尾矿合成Fe-SBA-15介孔材料及其性能研究[D]. 北京: 中国地质大学, 2019.

    Google Scholar

    XU X D. Synthesis and properties of Fe-SBA-15 mesoporous materials from Iron tailings[D]. Beijing: China University of Geosciences, 2019.

    Google Scholar

    [92] 牟文宁, 卢俊达, 罗绍华, 等. 铁尾矿硫酸焙烧法提取铁制备α-Fe2O3光催化剂[J]. 金属矿山, 2020(7): 206-210.

    Google Scholar

    MOU W M, LU J D, LUO S H, et al. Preparation of α-Fe2O3 photocatalyst from iron tailings by roasting with sulfuric acid[J]. Metal Mines, 2020(7): 206-210.

    Google Scholar

    [93] 郑昭. 铁矿石尾矿制备催化剂催化还原氮氧化物试验研究[D]. 马鞍山: 安徽工业大学, 2017.

    Google Scholar

    ZHENG Z. Experimental study on the catalytic reduction of nitrogen oxides in the preparation catalyst of iron ore tailings[D]. Ma'anshan: Anhui University of Technology, 2017.

    Google Scholar

    [94] GONG Z J, QI R, ZHANG Z, et al. NO reduction by semi-coke and tailing combined catalyst[J]. Energy Reports, 2021, 7: 296-305. doi: 10.1016/j.egyr.2021.10.029

    CrossRef Google Scholar

    [95] VICTOR AUGUSTO ARAúJO DE FREITAS, SAMUEL MOURABREDER, FLVIA PAULUCCI CIANGA SILVAS, et al. Use of iron ore tailing from tailing dam as catalyst in a fenton-like process for methylene blue oxidation in continuous flow mode[J]. Chemosphere, 2018, 219: 328-334.

    Google Scholar

    [96] GONG L L, LIANG J S, KOMG L P, et al. Synthesis of high-performance copper barium silicate composite pigment from waste iron ore tailings[J]. Ceramics International, 2021, 47(19): 27987-27997. doi: 10.1016/j.ceramint.2021.06.230

    CrossRef Google Scholar

    [97] 苏琳, 刘双, 程煜昊, 等. 以铁尾矿为原料制备微/纳米结构白炭黑和氧化铁[J]. 沈阳理工大学学报, 2016, 35(2): 90-95. doi: 10.3969/j.issn.1003-1251.2016.02.019

    CrossRef Google Scholar

    SU L, LIU S, CHENG Y H, et al. Silica and iron oxide with micro/nano structure were prepared from iron tailings[J]. Journal of Shenyang University of Technology, 2016, 35(2): 90-95. doi: 10.3969/j.issn.1003-1251.2016.02.019

    CrossRef Google Scholar

    [98] 杜培培, 张玉柱, 龙跃. 铁尾矿对矿渣纤维制备中熔体流动性的影响[J]. 钢铁, 2019, 54(6): 109-113.

    Google Scholar

    DU P P, ZHANG Y Z, LONG Y. Effect of iron tailings on melt fluidity in the preparation of slag fibers[J]. Iron & Steel, 2019, 54(6): 109-113.

    Google Scholar

    [99] 孙希乐, 安卫东, 张韬, 等. 利用铁尾矿和副产品云母粉、白云石制备土壤调理剂试验研究[J]. 金属矿山, 2018(6): 192-196.

    Google Scholar

    SUN X L, AN W D, ZHANG T, et al. Experimental study on soil conditioner preparation by using iron tailings and by-product mica powder and dolomite[J]. Metal Mine, 2018(6): 192-196.

    Google Scholar

    [100] 陈贤树, 曲生华, 张琼琼, 等. 利用选铁尾矿及铁矿副产品制备土壤调理剂关键技术及应用研究[J]. 新型建筑材料, 2021, 48(2): 106-109. doi: 10.3969/j.issn.1001-702X.2021.02.024

    CrossRef Google Scholar

    CHEN X S, QU S H, ZHANG Q Q, et al. Key technology and application of soil condier preparation by iron silils and iron mine by-products[J]. New Building Materials, 2021, 48(2): 106-109. doi: 10.3969/j.issn.1001-702X.2021.02.024

    CrossRef Google Scholar

    [101] 张丛香, 刘润华, 刘双安, 等. 利用铁尾矿改良苏打盐碱地技术研究与应用[J]. 矿业工程, 2016, 14(1): 39-41. doi: 10.3969/j.issn.1671-8550.2016.01.013

    CrossRef Google Scholar

    ZHANG C X, LIU R H, LIU S A, et al. Research and application of iron tailing[J]. Mining Engineering, 2016, 14(1): 39-41. doi: 10.3969/j.issn.1671-8550.2016.01.013

    CrossRef Google Scholar

    [102] 丁文金, 李丁, 马友华, 等. 磁化复混肥料的磁化工艺及磁性稳定性研究[J]. 磷肥与复肥, 2014, 29(2): 13-15. doi: 10.3969/j.issn.1007-6220.2014.02.005

    CrossRef Google Scholar

    DING W J, LI D, MA Y H, et al. Study on magnetization process and magnetic stability[J]. Phosphorus & Compound fertilizer, 2014, 29(2): 13-15. doi: 10.3969/j.issn.1007-6220.2014.02.005

    CrossRef Google Scholar

    [103] CUI X W, GENG Y, LI T, et al. Field application and effect evaluation of different iron tailings soil utilization technologies[J]. Resources, Conservation & Recycling, 2021, 173: 105746.

    Google Scholar

    [104] 王磊, 许永利, 李富平. 不同配植模式对铁尾矿性质的影响[J]. 矿业研究与开发, 2020, 40(5): 144-148.

    Google Scholar

    WANG L, XU Y L, LI F P. Effects of different planting modes on the properties of iron tailings[J]. Mining Research and Development, 2020, 40(5): 144-148.

    Google Scholar

    [105] 王俊娟, 杨何宝, 王薇, 等. 苜蓿接种根瘤菌和施肥对铁尾矿砂基质改良效果的影响[J]. 水土保持学报, 2016, 30(1): 272-277.

    Google Scholar

    WANG J J, YANG H B, WANG W, et al. Effects of alfalfa inoculation with rhizobia and fertilization on the improvement of iron tailings sand matrix[J]. Journal of Soil and Water Conservation, 2016, 30(1): 272-277.

    Google Scholar

    [106] 宋建伟, 刘硕, 袁运许, 等. 铁尾矿植被混凝土配制及其植物适宜性研究[J]. 金属矿山, 2021(8): 170-177.

    Google Scholar

    SONG J W, LIU S, YUAN Y X, et al. Study on the preparation of iron tailings vegetation concrete and its plant suitability[J]. Metal Mines, 2021(8): 170-177.

    Google Scholar

    [107] 宋凤敏, 张兴昌, 刘瑾, 等. 铁尾矿库区白茅对重金属的吸收与富集特征[J]. 西北农林科技大学学报(自然科学版), 2019, 47(4): 83-90+100.

    Google Scholar

    SONG F M, ZHANG X C, LIU J, et al. Absorption and enrichment characteristics of heavy metals in Imperata cylindrica in iron tailing pond area[J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(4): 83-90+100.

    Google Scholar

    [108] 孙立群. 铁尾矿土壤化利用及重金属污染的微生物修复技术[D]. 济南: 山东大学, 2017.

    Google Scholar

    SUN L Q. Microbial remediation technology for iron tailings soil utilization and heavy metal pollution[D]. Ji'nan: Shandong University, 2017.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(4267) PDF downloads(600) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint