Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 3
Article Contents

QIU Hongju, HAO Xiandong, ZHANG Yanqiong, GAO Lei, CHEN Guo. Progress in Microwave-assisted Recovery of Valuable Metals from Spent Lithium Battery Cathode Materials[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 38-44. doi: 10.13779/j.cnki.issn1001-0076.2022.03.006
Citation: QIU Hongju, HAO Xiandong, ZHANG Yanqiong, GAO Lei, CHEN Guo. Progress in Microwave-assisted Recovery of Valuable Metals from Spent Lithium Battery Cathode Materials[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 38-44. doi: 10.13779/j.cnki.issn1001-0076.2022.03.006

Progress in Microwave-assisted Recovery of Valuable Metals from Spent Lithium Battery Cathode Materials

More Information
  • Recycling of high-value materials such as Ni, Co, Mn, and Li from used lithium battery cathode materials has become a current research hotspot, resulting from the requirements on the protection of the national strategic key metal and the development of the international frontier. This paper summarized the valuable metals recovery process for waste lithium battery positive electrode, and introduced the principle and application of microwave technology in the metallurgical process. The applications of microwave-assisted heat and humidity combined process in the roasting reduction process, leaching process, and extraction process were studied emphatically. With the involvement of microwave energy, the carbon thermal reduction time was saved, the leaching rate of metal ions was increased and the mass transfer rate of the extraction process was accelerated, ultimately achieving an increase in yield and quality of the target metal. Finally, we prospected the development prospect of waste lithium battery recovery market in the future.

  • 加载中
  • [1] ZHENG M, TANG H, LI L, et al. Hierarchically nanostructured transition metal oxides for lithium-ion batteries[J]. Advanced Science, 2018, 5(3): 1700592. doi: 10.1002/advs.201700592

    CrossRef Google Scholar

    [2] FAN M, CHANG X, MENG Q, et al. Progress in the sustainable recycling of spent lithium-ion batteries[J]. SusMat, 2021, 1(2): 241-254. doi: 10.1002/sus2.16

    CrossRef Google Scholar

    [3] LI W, SONG B, MANTHIRAM A. High-voltage positive electrode materials for lithium-ion batteries[J]. Chemical Society Reviews, 2017, 46(10): 3006-3059. doi: 10.1039/C6CS00875E

    CrossRef Google Scholar

    [4] TAO R, XING P, LI H, et al. Recovery of spent LiCoO2 lithium-ion battery via environmentally friendly pyrolysis and hydrometallurgical leaching[J]. Resources, Conservation and Recycling, 2022, 176: 105921. doi: 10.1016/j.resconrec.2021.105921

    CrossRef Google Scholar

    [5] SCHMUCH R, WAGNER R, HÖRPEL G, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature Energy, 2018, 3(4): 267-278. doi: 10.1038/s41560-018-0107-2

    CrossRef Google Scholar

    [6] DUAN X, ZHU W, RUAN Z, et al. Recycling of lithium batteries-a review[J]. Energies, 2022, 15(5): 1611. doi: 10.3390/en15051611

    CrossRef Google Scholar

    [7] YANG Y, OKONKWO E G, HUANG G, et al. On the sustainability of lithium ion battery industry-a review and perspective[J]. Energy Storage Materials, 2021, 36: 186-212. doi: 10.1016/j.ensm.2020.12.019

    CrossRef Google Scholar

    [8] MAKUZA B, TIAN Q, GUO X, et al. Pyrometallurgical options for recycling spent lithium-ion batteries: a comprehensive review[J]. Journal of Power Sources, 2021, 491: 229622. doi: 10.1016/j.jpowsour.2021.229622

    CrossRef Google Scholar

    [9] CHEN X, GUO C, MA H, et al. Organic reductants based leaching: a sustainable process for the recovery of valuable metals from spent lithium ion batteries[J]. Waste Management, 2018, 75: 459-468. doi: 10.1016/j.wasman.2018.01.021

    CrossRef Google Scholar

    [10] 王芳, 张邦胜, 刘贵清, 等. 废旧动力电池资源再生利用技术进展[J]. 中国资源综合利用, 2018, 36(10): 106-111. doi: 10.3969/j.issn.1008-9500.2018.10.034

    CrossRef Google Scholar

    WANG F, ZHANG B S, LIU G Q, et al. Progress in recycling technology of waste power battery resources[J]. China Resources Comprehensive Utilization, 2018, 36(10): 106-111. doi: 10.3969/j.issn.1008-9500.2018.10.034

    CrossRef Google Scholar

    [11] MA Y Y, TANG J J, WANALDI R, et al. A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching[J]. Journal of Hazardous Materials, 2021, 402: 123491. doi: 10.1016/j.jhazmat.2020.123491

    CrossRef Google Scholar

    [12] ZHANG Y C, WANG W Q, FANG Q, et al. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching[J]. Waste Management, 2020, 102: 847-855. doi: 10.1016/j.wasman.2019.11.045

    CrossRef Google Scholar

    [13] 张超, 廖青云, 路璐, 等. 锂电池回收产业发展报告[J]. 高科技与产业化, 2019(3): 36-45.

    Google Scholar

    ZHANG C, LIAO Q Y, LU L, et al. Report on the development of lithium battery recycling industry[J]. High Technology and Industrialization, 2019(3): 36-45.

    Google Scholar

    [14] 靳星, 贾美丽, 杜浩, 等. 废旧磷酸铁锂正极材料回收再生研究进展[J]. 有色金属工程, 2020, 10(11): 64-72. doi: 10.3969/j.issn.2095-1744.2020.11.010

    CrossRef Google Scholar

    JIN X, JIA M L, DU H, et al. Research progress on recycling of waste lithium iron phosphate cathode materials[J]. Nonferrous Metal Engineering, 2020, 10(11): 64-72. doi: 10.3969/j.issn.2095-1744.2020.11.010

    CrossRef Google Scholar

    [15] LIU C, LIN J, CAO H, et al. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review[J]. Journal of Cleaner Production, 2019, 228: 801-813. doi: 10.1016/j.jclepro.2019.04.304

    CrossRef Google Scholar

    [16] MENG F, LIU Q, KIM R, et al. Selective recovery of valuable metals from industrial waste lithium-ion batteries using citric acid under reductive conditions: leaching optimization and kinetic analysis[J]. Hydrometallurgy, 2020, 191: 105160. doi: 10.1016/j.hydromet.2019.105160

    CrossRef Google Scholar

    [17] GUAN J, LI Y, GUO Y, et al. Mechanochemical process enhanced cobalt and lithium recycling from wasted lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 1026-1032.

    Google Scholar

    [18] HUANG B, WANG J. Bio-hydrometallurgically treatment of spent Lithium-ion batteries[M]. Recycling of Spent Lithium-ion Batteries, 2019: 85-92.

    Google Scholar

    [19] 李之钦, 庄绪宁, 宋小龙, 等. 废锂离子电池正极材料的火法资源化技术研究进展[J]. 环境工程, 2021, 39(4): 115-122.

    Google Scholar

    LI Z Q, ZHUANG X N, SONG S L, et al. Research progress of pyrogenic resource recovery technology for waste lithium-ion battery cathode materials[J]. Environmental Engineering, 2021, 39(4): 115-122.

    Google Scholar

    [20] DIAZ F, WANG Y, MOORTHY T, et al. Degradation mechanism of nickel-cobalt-aluminum (NCA) cathode material from spent lithium-ion batteries in microwave-assisted pyrolysis[J]. Metals, 2018, 8(8): 565. doi: 10.3390/met8080565

    CrossRef Google Scholar

    [21] 庞建明, 潘聪超, 马永宁, 等. 微波冶炼低品位锰矿制备含锰生铁的试验研究[J]. 中国有色冶金, 2020, 49(3): 83-87.

    Google Scholar

    PANG J M, PAN C C, MA Y N, et al. Experimental study of microwave smelting of low-grade manganese ore for the preparation of pig iron containing manganese[J]. China Nonferrous Metallurgy, 2020, 49(3): 83-87.

    Google Scholar

    [22] MIZUNO N, KOSAI S, YAMASUE E. Microwave-based extractive metallurgy to obtain pure metals: A review[J]. Cleaner Engineering and Technology, 2021, 5: 100306. doi: 10.1016/j.clet.2021.100306

    CrossRef Google Scholar

    [23] 庞建明, 赵沛, 郭培民. 红土镍矿低温还原+微波冶炼镍铁新技术[J]. 中国冶金, 2017, 27(9): 70-76.

    Google Scholar

    PANG J M, ZHAO P, GUO P M. New technology for low-temperature reduction + microwave smelting of ferronickel from laterite nickel ore[J]. China Metallurgy, 2017, 27(9): 70-76.

    Google Scholar

    [24] FERRARI-JOHN R S, BATCHELOR A R, KATRIB J, et al. Understanding selectivity in radio frequency and microwave sorting of porphyry copper ores[J]. International Journal of Mineral Processing, 2016, 155: 64-73. doi: 10.1016/j.minpro.2016.08.011

    CrossRef Google Scholar

    [25] MISHRA R R, SHARMA A K. Microwave-material interaction phenomena: heating mechanisms, challenges and opportunities in material processing[J]. Composites Part A: Applied Science and Manufacturing, 2016, 81: 78-97. doi: 10.1016/j.compositesa.2015.10.035

    CrossRef Google Scholar

    [26] 陈菓. 微波法制备人造金红石新工艺及设备研制[D]. 昆明: 昆明理工大学, 2012.

    Google Scholar

    CHEN G. New process and equipment development for the preparation of artificial rutile by microwave method[D]. Kunming: Kunming University of Technology, 2012.

    Google Scholar

    [27] ZHAO Y, LIU B, ZHANG L, et al. Microwave-absorbing properties of cathode material during reduction roasting for spent lithium-ion battery recycling[J]. Journal of Hazardous Materials, 2020, 384: 121487. doi: 10.1016/j.jhazmat.2019.121487

    CrossRef Google Scholar

    [28] 昝文宇, 马北越, 刘国强. 动力锂电池回收利用现状与展望[J]. 稀有金属与硬质合金, 2020, 48(5): 5-9.

    Google Scholar

    ZAN W Y, MA B Y, LIU G Q. Status and prospects of power lithium battery recycling[J]. Rare Metals and Cemented Carbides, 2020, 48(5): 5-9.

    Google Scholar

    [29] ZHANG J H, GAO L H, HE Z J, et al. Separation and recovery of iron and nickel from low-grade laterite nickel ore by microwave carbothermic reduction roasting[J]. Journal of Materials Research and Technology, 2020, 9(6): 12223-12235. doi: 10.1016/j.jmrt.2020.08.036

    CrossRef Google Scholar

    [30] LI K Q, CHEN J, PENG J H, et al. Pilot-scale study on enhanced carbothermal reduction of low-grade pyrolusite using microwave heating[J]. Powder Technology, 2020, 360: 846-854. doi: 10.1016/j.powtec.2019.11.015

    CrossRef Google Scholar

    [31] PINDAR S, DHAWAN N. Comparison of microwave and conventional indigenous carbothermal reduction for recycling of discarded lithium-ion batteries[J]. Transactions of the Indian Institute of Metals, 2020, 73(8): 2041-2051. doi: 10.1007/s12666-020-01956-2

    CrossRef Google Scholar

    [32] FU Y P, HE Y Q, YANG Y, et al. Microwave reduction enhanced leaching of valuable metals from spent lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 832: 154920. doi: 10.1016/j.jallcom.2020.154920

    CrossRef Google Scholar

    [33] ZHAO Y Z, LIU B G, ZHANG L B, et al. Microwave pyrolysis of macadamia shells for efficiently recycling lithium from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2020, 396: 122740. doi: 10.1016/j.jhazmat.2020.122740

    CrossRef Google Scholar

    [34] JIN H, ZHANG J, WANG D, et al. Facile and efficient recovery of lithium from spent LiFePO4 batteries via air oxidation-water leaching at room temperature[J]. Green Chemistry, 2022, 24(1): 152-162. doi: 10.1039/D1GC03333F

    CrossRef Google Scholar

    [35] DANDIA A, PAREWA V, GUPTA S L, et al. Microwave-assisted Fe3O4 nanoparticles catalyzed synthesis of chromeno[1, 6] naphthyridines in aqueous media[J]. Catalysis Communications, 2015, 61: 88-91.

    Google Scholar

    [36] PINDAR S, DHAWAN N. Evaluation of carbothermic processing for mixed discarded lithium-ion batteries[J]. Metallurgical Research & Technology, 2020, 117(3): 302.

    Google Scholar

    [37] PINDAR S, DHAWAN N. Carbothermal reduction of spent mobile phones batteries for the recovery of lithium, cobalt, and manganese values[J]. JOM, 2019, 71(12): 4483-4491.

    Google Scholar

    [38] MUSARIRI B, AKDOGAN G, DORFLING C, et al. Evaluating organic acids as alternative leaching reagents for metal recovery from lithium ion batteries[J]. Minerals Engineering, 2019, 137: 108-117.

    Google Scholar

    [39] PINDAR S, DHAWAN N. Recycling of mixed discarded lithium-ion batteries via microwave processing route[J]. Sustainable Materials and Technologies, 2020, 25: 157.

    Google Scholar

    [40] PATIL D, CHIKKAMATH S, KENY S, et al. Rapid dissolution and recovery of Li and Co from spent LiCoO2 using mild organic acids under microwave irradiation[J]. Journal of Environmental Management, 2020, 256: 109935.

    Google Scholar

    [41] PINDAR S, DHAWAN N. Evaluation of in-situ microwave reduction for metal recovery from spent lithium-ion batteries[J]. Sustainable Materials and Technologies, 2020, 25: 201.

    Google Scholar

    [42] LIE J, LIU J C. Closed-vessel microwave leaching of valuable metals from spent lithium-ion batteries (LIBs) using dual-function leaching agent: Ascorbic acid[J]. Separation and Purification Technology, 2021, 266: 118458.

    Google Scholar

    [43] SHIH Y J, CHIEN S K, JHANG S R, et al. Chemical leaching, precipitation and solvent extraction for sequential separation of valuable metals in cathode material of spent lithium ion batteries[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 100: 151-159.

    Google Scholar

    [44] 王斌, 梁精龙, 李慧, 等. 废旧锂离子电池金属离子回收技术综述[J]. 电源技术, 2019, 43(1): 165-167.

    Google Scholar

    WANG B, LIANG J L, LI H, et al. A review of metal ion recovery technologies for waste lithium-ion batteries[J]. Power Technology, 2019, 43(1): 165-167.

    Google Scholar

    [45] MAO Y, ROBINSON J, BINNER E. Understanding heat and mass transfer processes during microwave-assisted and conventional solvent extraction[J]. Chemical Engineering Science, 2021, 233: 116418.

    Google Scholar

    [46] MARTíN A, NAVARRETE A. Microwave-assisted process intensification techniques[J]. Current Opinion in Green and Sustainable Chemistry, 2018, 11: 70-75.

    Google Scholar

    [47] GRüTZKE M, KRüGER S, KRAFT V, et al. Investigation of the storage behavior of shredded lithium-ion batteries from electric vehicles for recycling purposes[J]. Chemistry Sustainability Energy Materials, 2015, 8(20): 3433-3438.

    Google Scholar

    [48] NAYL A A, HAMED M M, RIZK S E. Selective extraction and separation of metal values from leach liquor of mixed spent Li-ion batteries[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 55: 119-125.

    Google Scholar

    [49] 李之钦, 李商略, 庄绪宁, 等. 微波焙烧强化废锂离子电池中的金属回收研究[J]. 中国环境科学, 2021, 41(10): 4712-4719.

    Google Scholar

    LI Z Q, LI S L, ZHUANG X N, et al. Study on microwave roasting for enhanced metal recovery from waste lithium-ion batteries[J]. China Environmental Science, 2021, 41(10): 4712-4719.

    Google Scholar

    [50] WINDISCH-KERN S, GEROLD E, NIGL T, et al. Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies[J]. Waste Management, 2022, 138: 125-139.

    Google Scholar

    [51] 孙静, 江镇宇, 于冠群, 等. 微波技术在锂离子电池正极材料高效回收再利用中的研究进展[J]. 环境工程学报, 2021, 15(7): 2191-2217.

    Google Scholar

    SUN J, JIANG Z Y, YU G Q, et al. Research progress of microwave technology in efficient recycling of lithium-ion battery cathode materials[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2191-2217.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(3)

Article Metrics

Article views(2309) PDF downloads(396) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint