Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 4
Article Contents

ZHANG Haiqi, NI Wenshan, LIU Lei, ZHANG Hongli. Determination of Ultra-trace Potassium in High Purity Quartz by Low RF Power-Inductively Coupled Plasma Mass Spectrometry[J]. Conservation and Utilization of Mineral Resources, 2022, 42(4): 166-172. doi: 10.13779/j.cnki.issn1001-0076.2022.01.033
Citation: ZHANG Haiqi, NI Wenshan, LIU Lei, ZHANG Hongli. Determination of Ultra-trace Potassium in High Purity Quartz by Low RF Power-Inductively Coupled Plasma Mass Spectrometry[J]. Conservation and Utilization of Mineral Resources, 2022, 42(4): 166-172. doi: 10.13779/j.cnki.issn1001-0076.2022.01.033

Determination of Ultra-trace Potassium in High Purity Quartz by Low RF Power-Inductively Coupled Plasma Mass Spectrometry

More Information
  • Potassium (K) is an important impurity element in high-purity quartz and accurate determination of its content is of great significance for the evaluation of the quality of high-purity quartz products. Via ultra-trace K in high-purity quartz samples were dissolved by atmospheric acid dissolution method, an inductively coupled plasma mass spectrometry (ICP-MS) determination method for K was established and the interference of multi-atomic molecular ions was eliminated by cold plasma with low RF power in ICP-MS and 50 ng/mL rubidium was used as the internal standard elements in this process. Background interference in mass spectrometry for the determination of potassium was greatly eliminates. And the sample weight, RF power, sampling depth and atomized gas flow were optimized in this work. Finally, under the optimal conditions of 1.000 0 g of weight sample, 800 W of RF power, 5.6 mm of sampling depth and 1.06 L/min of atomized gas flow rate, K element standard series solutions were determined and the mass spectrometry intensity of K showed good linear relationship with ρ(K) in the range of 0.100~50 ng/mL with the correlation coefficients of calibration curve was 0.999 6. The detection limit and quantification limit of K in high-purity quartz were 0.057 μg/g and 0.191 μg/g, respectively. Typical commercial high-purity quartz samples were selected for the application experiment of this method, and the relative standard deviations (RSD) for 9 parallel measurements were between 2.9%~5.1% and the recoveries of K were between 96.4%~105.4%.

  • 加载中
  • [1] 李光惠, 王超峰, 詹建华, 等. 高纯石英原料作为战略性矿产的分析及建议[J]. 中国非金属矿工业导刊, 2020(5): 20-24. doi: 10.3969/j.issn.1007-9386.2020.05.006

    CrossRef Google Scholar

    LI G H, WANG C F, ZHAN J H, et al. Analysis and suggestions on high purity quartz raw material as strategic minerals[J]. China Non-metallic Minerals Industry, 2020(5): 20-24. doi: 10.3969/j.issn.1007-9386.2020.05.006

    CrossRef Google Scholar

    [2] 贾德龙, 张万益, 陈丛林, 等. 高纯石英全球资源现状与我国发展建议[J]. 矿产保护与利用, 2019, 39(5): 111-117.

    Google Scholar

    JIA D L, ZHANG W Y, CHEN C L, et al. Global resource status and China's development suggestions of high purity quartz[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 111-117.

    Google Scholar

    [3] 汪灵, 党陈萍, 李彩侠, 等. 中国高纯石英技术现状与发展前景[J]. 地学前缘, 2014, 21(5): 267-273.

    Google Scholar

    WANG L, DANG C P, LI C X, et al. Technology of high-purity quartz in China: status quo and prospect[J]. Earth Science Frontiers, 2014, 21(5): 267-273.

    Google Scholar

    [4] 颜玲亚, 刘艳飞, 于海军, 等. 中国高纯石英资源开发利用现状及供需形势[J]. 国土资源情报, 2020(10): 98-103.

    Google Scholar

    YAN L Y, LIU Y F, YU H J, et al. Development and utilization status and supply and demand situation of high purity quartz resources[J]. Land and Resources Information, 2020(10): 98-103.

    Google Scholar

    [5] GÖTZE J. Chemistry, textures and physical properties of quartz-geological interpretation and technical application[J]. Mineralogical Magazine, 2009, 73(4): 645-671.

    Google Scholar

    [6] 廊坊市市场监督管理局. 电子专用材料单晶硅生长用石英坩埚工艺技术规范: DB 1310/T 227-2020[S]. 2020.

    Google Scholar

    Langfang Market Supervision Administration. Technical specification for quartz crucible process for growth of monocrystalline silicon for special electronic materials: DB1310/T 227-2020[S]. 2020.

    Google Scholar

    [7] 湖南省经信委. 高纯(SiO2 ≥ 99.997%)石英砂: DB43/T 1167-2016[S]. 2016.

    Google Scholar

    Hunan Provincial Economic and Information Commission. High purity (SiO2 ≥ 99.997%) quartz sand: DB43/T 1167-2016[S]. 2016.

    Google Scholar

    [8] 全国半导体设备和材料标准化技术委员会. 光伏用高纯石英砂: GB/T 32649-2016[S]. 北京: 中国标准出版社, 2016.

    Google Scholar

    Semiconductor Equipment and Materials. High purity arenaceous quartz used in photovoltaic applications: GB/T 32649-2016[S]. Beijing: Standards Press of China, 2016.

    Google Scholar

    [9] 全国半导体设备和材料标准化技术委员会. 电感耦合等离子质谱法检测石英砂中痕量元素: GB/T 32650-2016[S]. 北京: 中国标准出版社, 2016.

    Google Scholar

    Semiconductor Equipment and Materials. Determining the content of trace elements in arenaceous quartz by inductively coupled plasma mass spectrometry (ICP-MS): GB/T 32650-2016[S]. Beijing: Standards Press of China, 2016.

    Google Scholar

    [10] 全国工业陶瓷标准化技术委员会功能陶瓷分技术委员会. 高纯石英中杂质含量的测定方法会电感耦合等离子体原子发射光谱法: JC/T 2027-2010[S]. 2010.

    Google Scholar

    Functional Ceramics, Determination of impurities in high purity quartz-Inductively coupled plasma atomic emission spectrometry: JC/T 2027-2010[S]. 2010.

    Google Scholar

    [11] 全国工业玻璃和特种玻璃标准化技术委员会. 石英玻璃中羟基含量检验方法: GB/T 12442-2019[S]. 北京: 中国标准出版社, 2019.

    Google Scholar

    Industrial Glass and Special Glass. Test method for the hydroxyl groups content of silica glass: GB/T 12442-2019[S]. Beijing: Standards Press of China, 2019.

    Google Scholar

    [12] 张金明, 胡艳巧, 魏利, 等. 聚氧化乙烯絮凝-电感耦合等离子体原子发射光谱(ICP-AES)法测定土壤中水溶性钾、钠、钙、镁、硫酸根[J]. 中国无机分析化学, 2022, 12(2): 40-45.

    Google Scholar

    ZHANG J M, HU Y Q, WEI L, et al, Polyethylene oxide flocculation-simultaneous determination of water-soluble potassium, sodium, calcium, magnesium and sulfate in soil by inductively coupled plasma atomic emission spectroscopy[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(2): 40-45.

    Google Scholar

    [13] 樊颖果, 徐国津. 原子吸收光谱和原子发射光谱法测定酸雨中钾、钠、钙、镁方法比较[J]. 中国无机分析化学, 2013, 3(2): 28-31.

    Google Scholar

    FAN Y G, XUE G J, Comparison of atomic absorption spectrometry and atomic emission spectrometry for determination of potassium, sodium, calcium and magnesium in acid rain[J]. Chinese Journal of Inorganic Analytical Chemistry, 2013, 3(2): 28-31.

    Google Scholar

    [14] 郭红巧, 胡净宇, 侯艳霞, 等. 电感耦合等离子体串联质谱法测定高温合金中痕量磷和硫[J]. 冶金分析, 2021, 41(11): 1-7.

    Google Scholar

    GUO H Q, HU J Y, HOU Y Z, et al, Determination of trace phosphorus and sulfur in superalloys by inductively coupled plasma tandem mass spectrometry[J]. Metallurgical Analysis, 2021, 41(11): 1-7.

    Google Scholar

    [15] 张宏丽, 倪文山, 刘磊, 等. 冷焰模式-电感耦合等离子体质谱法测定高纯石英中痕量铁[J]. 冶金分析, 2021, 41(7): 28-34.

    Google Scholar

    ZHANG H L, NI W S, LIU L, et al. Determination of ultra-trace iron in high-purity quartz by cool flame mode-inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2021, 41(7): 28-34.

    Google Scholar

    [16] 高小红. ICP-MS测定地球化学样品中多原子分子离子干扰消除技术的研究及方法应用[D]. 西安: 长安大学, 2016.

    Google Scholar

    GAO X H. Study on the elimination of polyatomic molecule ion interferences by ICP-MS for geochemical samples[D]. Xi'an: Chang'an University, 2016.

    Google Scholar

    [17] 中华人民共和国国土资源部. DZ/T 0130-2006地质矿产实验室测试质量管理规范[S]. 北京: 中国标准出版社, 2006.

    Google Scholar

    Ministry of Land and Resources, PRC. DZ/T 0130-2006 The specification of testing quality management for geological laboratories[S]. Beijing: Standards Press of China, 2006.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(5)

Article Metrics

Article views(761) PDF downloads(32) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint