Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 5
Article Contents

HUANG Yanfang, SHI Kunpeng, LIU Bingbing, SU Shengpeng, HAN Guihong. Research Status and Prospect of Deep Separation Technology for Dissolved Molybdenum and Vanadium[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 65-72. doi: 10.13779/j.cnki.issn1001-0076.2021.05.010
Citation: HUANG Yanfang, SHI Kunpeng, LIU Bingbing, SU Shengpeng, HAN Guihong. Research Status and Prospect of Deep Separation Technology for Dissolved Molybdenum and Vanadium[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 65-72. doi: 10.13779/j.cnki.issn1001-0076.2021.05.010

Research Status and Prospect of Deep Separation Technology for Dissolved Molybdenum and Vanadium

More Information
  • Molybdenum and vanadium, as important strategic metals, play an irreplaceable key role in the national economy, national defense and military industry and other fields. With the rapid development of cutting-edge technology fields, such as functional materials and electronic components, a large number of spent catalysts and targets were produced, resulting in a large amount of solid waste containing Mo/V and other strategic metals. The secondary resources mentioned above containing high content of valuable metals such as molybdenum and vanadium have great economic value, but part of the solid waste wasdefined as hazardous waste. It is of great significance for relieving the pressure on environmental protection, ensuring national resource security, national defense security, and the development needs of strategic emerging industries torealize elective separation and resource utilization of molybdenum and vanadium in the secondary resources. This paper systematically analyzed the general situation of our country's molybdenum and vanadium mineral resources and secondary resources, focused on the research progress of deep selective separation technique for dissolved molybdenum and vanadium, summarized the common principle of the method, process characteristics and development directionof molybdenum and vanadium separation technology.Finally, a feasible strategy by using ion flotation/solvent extraction coupling technology(floating-extraction) to enhance the selective deep separation of molybdenum and vanadium was proposed, and the development prospects of the separation technology were prospected.

  • 加载中
  • [1] 张汉鑫, 李慧, 梁精龙, 等. 稀有金属钼资源回收现状及进展[J]. 矿产综合利用, 2020, 221(1): 52-54.

    Google Scholar

    [2] 王秋霞, 马化龙. 我国钒资源和V2O5研究、生产的现状及前景[J]. 矿产保护与利用, 2009(5): 47-50. doi: 10.3969/j.issn.1001-0076.2009.05.013

    CrossRef Google Scholar

    [3] 陈桃, 简胜, 谢贤, 等. 钒钛磁铁矿尾矿综合利用研究进展[J]. 矿产保护与利用, 2021, 41(2): 174-178.

    Google Scholar

    [4] 于恒渊. 冰晶石熔盐体系电解制备金属钒的研究[D]. 沈阳: 东北大学, 2014.

    Google Scholar

    [5] 夏青, 梁治安, 杨秀丽, 等. 某选铁尾矿中低品位钼, 锌分选回收试验研究[J]. 有色金属工程, 2020, 10(5): 81-88. doi: 10.3969/j.issn.2095-1744.2020.05.015

    CrossRef Google Scholar

    [6] 朱欣然. 国内外钼资源供需形势分析[J]. 矿产保护与利用, 2020, 40(1): 172-178.

    Google Scholar

    [7] USGS U S. Geological survey mineral commodity summaries[EB/OL]. [2021-06-14]. https://www.usgs.gov/.

    Google Scholar

    [8] 李琳, 吕宪俊, 栗鹏. 钼矿选矿工艺发展现状[J]. 中国矿业, 2012(2): 99-103. doi: 10.3969/j.issn.1004-4051.2012.02.028

    CrossRef Google Scholar

    [9] 谢铿, 王海北, 张邦胜. 辉钼精矿加压湿法冶金技术研究进展[J]. 金属矿山, 2014(1): 74-79.

    Google Scholar

    [10] 张建廷, 陈碧. 攀西钒钛磁铁矿主要元素赋存状态及回收利用[J]. 矿产保护与利用, 2008(5): 38-41. doi: 10.3969/j.issn.1001-0076.2008.05.010

    CrossRef Google Scholar

    [11] 刘景槐, 谭爱华. 我国石煤钒矿提钒现状综述[J]. 湖南有色金属, 2010, 26(5): 11-14. doi: 10.3969/j.issn.1003-5540.2010.05.004

    CrossRef Google Scholar

    [12] 李昌林, 周云峰, 费海霞, 等. 石煤提钒工艺研究及应用现状[J]. 稀有金属与硬质合金, 2012, 40(6): 9-14.

    Google Scholar

    [13] 徐正震, 梁精龙, 李慧, 等. 含钒废弃物中钒的回收研究现状及展望[J]. 矿产综合利用, 2020(3): 8-13. doi: 10.3969/j.issn.1000-6532.2020.03.002

    CrossRef Google Scholar

    [14] 梁海宁, 刘欣梅, 昌兴文, 等. 炼油废催化剂的处理和利用[J]. 炼油技术与工程, 2010, 40(1): 1-5. doi: 10.3969/j.issn.1002-106X.2010.01.001

    CrossRef Google Scholar

    [15] 李富荣, 唐晓. 废钼镍催化剂回收技术现状与分析[J]. 中国资源综合利用, 2011, 29(11): 17-19. doi: 10.3969/j.issn.1008-9500.2011.11.003

    CrossRef Google Scholar

    [16] YANG C, ZHANG J, CHEN Y, et al. Efficient removal of oil from spent hydrodesulphurization catalysts using microwave pyrolysis method[J]. Journal of Analytical and Applied Pyrolysis, 2018, 135(8): 169-175.

    Google Scholar

    [17] KIM H I, LEE K W, D MISHRA, et al. Separation and recovery of vanadium from leached solution of spent residuehydrodesulfurization (RHDS) catalyst using solvent extraction[J]. Journal of Industrial & amp; Engineering Chemistry, 2014, 20(6): 4457-4462.

    Google Scholar

    [18] 刘公召, 隋智通. 从HDS废催化剂中提取钒和钼的研究[J]. 矿产综合利用, 2002(2): 40-42.

    Google Scholar

    [19] 高崇, 王为振, 常耀超, 等. HDS渣综合回收利用钒钼的研究[J]. 有色金属(冶炼部分), 2021, 4(7): 92-97.

    Google Scholar

    [20] 张梅英, 季登会. 废催化剂中钼、钒回收工艺的研究[J]. 矿冶, 2011, 20(4): 109-112.

    Google Scholar

    [21] 胡佩伟, 谢志诚, 胡兵, 等. 含钒固废综合利用现状及发展[J]. 矿产保护与利用, 2020, 40(5): 148-156.

    Google Scholar

    [22] 曾理, 肖连生, 李青刚, 等. 离子交换法从钼酸铵溶液中分离钼钒的研究[J]. 稀有金属与硬质合金, 2006, 34(2): 1-4. doi: 10.3969/j.issn.1004-0536.2006.02.001

    CrossRef Google Scholar

    [23] 施友富, 王海北. 废催化剂中钼和钒的分离[J]. 中国钼业, 2004(2): 39-41. doi: 10.3969/j.issn.1006-2602.2004.02.010

    CrossRef Google Scholar

    [24] ZENG L, CHU Y C. A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts: Part Ⅱ: Separation and purification[J]. Hydrometallurgy, 2009, 98 (1/2): 10-20.

    Google Scholar

    [25] THI HONG NGUYEN, MAN SEUNG LEE. A review on the separation of molybdenum, tungsten, and vanadium from leach liquors of diverse resources by solvent extraction[J]. Geosystem Engineering, 2016, 19 (5): 247-259. doi: 10.1080/12269328.2016.1186577

    CrossRef Google Scholar

    [26] 张家靓, 张立峰. Mo(Ⅵ)-V(Ⅴ)-H2O系的热力学平衡与钼酸盐深度除钒工艺的理论分析[J]. 稀有金属, 2016, 40(7): 701-707.

    Google Scholar

    [27] 廖宇龙, 李江涛. Mo(Ⅵ)-V(Ⅴ)-H2O体系的热力学分析[J]. 粉末冶金材料科学与工程, 2016, 21(5): 678-684. doi: 10.3969/j.issn.1673-0224.2016.05.003

    CrossRef Google Scholar

    [28] Cruywagen J J. Protonation, oligomerization, and condensation reactions of vanadate(Ⅴ), molybdate(Ⅵ), and tungstate(Ⅵ)[J]. Advances in Inorganic Chemistry, 1999, 49: 127-182.

    Google Scholar

    [29] 陈亮. 从钒浸出液中沉淀结晶型钒酸铁试验研究[J]. 湿法冶金, 2010, 29(3): 171-175. doi: 10.3969/j.issn.1009-2617.2010.03.009

    CrossRef Google Scholar

    [30] 巢亚军, 熊长芳, 朱超. 废工业催化剂回收技术进展[J]. 工业催化, 2006, 14(2): 64-67. doi: 10.3969/j.issn.1008-1143.2006.02.018

    CrossRef Google Scholar

    [31] 邓攀, 曾颜亮, 王坤, 等. 钼资源的回收技术现状及发展[J]. 山西冶金, 2012, 35(5): 1-3. doi: 10.3969/j.issn.1672-1152.2012.05.001

    CrossRef Google Scholar

    [32] 刘艳. 用离子交换法从加氢脱硫废催化剂的硫酸浸出液中回收高纯钼和钒[J]. 湿法冶金, 2014, 33(4): 288.

    Google Scholar

    [33] ZHANG P, INOUE K, YOSHIZUKA K, et al. Extraction and selective stripping of molybdenum(Ⅵ) and vanadium(Ⅳ) from sulfuric acid solution containing aluminum(Ⅲ), cobalt(Ⅱ), nickel(Ⅱ) and iron(Ⅲ) by LIX 63 in Exxsol D80[J]. Hydrometallurgy, 1996, 41(1): 45-53. doi: 10.1016/0304-386X(95)00015-9

    CrossRef Google Scholar

    [34] JDA B, JIA L, DHA B, et al. Green separation and recovery of molybdenum from tungstate solution achieved by using a recyclable vulcanizing agent[J]. Journal of Cleaner Production, 2020, 278: 123930.

    Google Scholar

    [35] ROKUKAWA N. Recovery of Vanadium and Nickel from Heavy Oil Ash[J]. Journal of the Japan Society of Waste Management Experts, 2002, 13(6): 387-393. doi: 10.3985/jswme.13.387

    CrossRef Google Scholar

    [36] PARK K H, MOHAPATRA D, REDDY B R. Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method. [J]. Journal of Hazardous Materials, 2006, 138(2): 311-316. doi: 10.1016/j.jhazmat.2006.05.115

    CrossRef Google Scholar

    [37] CHEN Y, FENG Q, ZHANG G, et al. Study on the recycling of valuable metals in spent Al2O3-based catalyst[J]. Minerals and Metallurgical Processing, 2007, 24(1): 30-34.

    Google Scholar

    [38] FUENZALIDA C. Room temperature electrochemical growth of polycrystalline BaMoO4 films[J]. Journal of the European Ceramic Society, 2003, 23(3): 519-525. doi: 10.1016/S0955-2219(02)00149-8

    CrossRef Google Scholar

    [39] OKA Y, TAMADA O, YAO T, et al. Hydrothermal Synthesis and Crystal Structure of a Novel Barium Vanadium Oxide: Ba0. 4V3O8(VO)0. 4·nH2O[J]. Journal of Solid State Chemistry, 1995, 114(2): 359-363. doi: 10.1006/jssc.1995.1055

    CrossRef Google Scholar

    [40] NGUYEN T H, MAN S L. Separation of molybdenum and vanadium from acid solutions by ion exchange[J]. Hydrometallurgy, 2013, 136(4): 65-70.

    Google Scholar

    [41] ZHU X, HUO G, NI J, et al. Removal of tungsten and vanadium from molybdate solutions using ion exchange resin[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(12): 2727-2732. doi: 10.1016/S1003-6326(17)60301-7

    CrossRef Google Scholar

    [42] 林晓. 伯胺溶剂化萃取在含钒铬钨钼废物资源化处理的应用基础研究[D]. 北京: 中国科学院研究生院(过程工程研究所), 2015.

    Google Scholar

    [43] BISHNOI A K, DASS R, SHARMA R G. Extraction of molybdenum(Ⅴ) as its ferron complex with trioctylamine in chloroform from a sulphuric acid medium[J]. Journal of Analytical Chemistry, 2008, 63(3): 214-218. doi: 10.1134/S1061934808030039

    CrossRef Google Scholar

    [44] SOLA B C, KUMARPARHI P, JIN-YOUNGLEE, et al. Environmentally friendly approach to recover vanadium and tungsten from spent SCR catalyst leach liquors using Aliquat 336[J]. RSC Advances, 2020, 10(34): 19736-19746. doi: 10.1039/D0RA02229B

    CrossRef Google Scholar

    [45] WANG H, FENG Y, LI H, et al. Recovery of vanadium from acid leaching solutions of spent oil hydrotreating catalyst using solvent extraction with D2EHPA (P204)[J]. Hydrometallurgy, 2020, 195: 105404. doi: 10.1016/j.hydromet.2020.105404

    CrossRef Google Scholar

    [46] 丁扬力, 肖连生, 曹佐英, 等. N263从钼酸钠溶液中萃取分离钼钒[J]. 有色金属科学与工程, 2017, 8 (1): 15-20.

    Google Scholar

    [47] 沈明伟, 朱昌洛, 李华伦. P507-煤油体系在钒钼萃取分离中的试验研究[J]. 矿产综合利用, 2007(4): 14-19. doi: 10.3969/j.issn.1000-6532.2007.04.004

    CrossRef Google Scholar

    [48] LI H, FENG Y, WANG H, et al. Separation of V (Ⅴ) and Mo (Ⅵ) in roasting-water leaching solution of spent hydrodesulfurization catalyst by co-extraction using P507-N235 extractant[J]. Separation and Purification Technology, 2020, 248: 117135. doi: 10.1016/j.seppur.2020.117135

    CrossRef Google Scholar

    [49] PAN Y, SUN X, QI M, et al. A clean and efficient method for separation of vanadium and molybdenum by aqueous two-phase systems[J]. Journal of Molecular Liquids, 2020, 313: 113540. doi: 10.1016/j.molliq.2020.113540

    CrossRef Google Scholar

    [50] PAN Y, SUN X, ZHANG Y. Separation of vanadium and molybdenum from aqueous solution using PEG2000+sodium sulfate+water aqueous two-phase system[J]. SN Applied Sciences, 2019, 1(11): 1461. doi: 10.1007/s42452-019-1507-z

    CrossRef Google Scholar

    [51] NGUYEN T H, LEE M S. Separation of Vanadium and Tungsten from Sodium Molybdate Solution by Solvent Extraction[J]. Industrial & amp; Engineering Chemistry Research, 2014, 53(20): 8608–8614

    Google Scholar

    [52] DELIYANNI E A, KYZAS G Z, MATIS K A. Various flotation techniques for metal ions removal[J]. Journal of Molecular Liquids, 2017, 225: 260-264. doi: 10.1016/j.molliq.2016.11.069

    CrossRef Google Scholar

    [53] 韩桂洪, 武宏阳, 黄艳芳, 等. 离子浮选法处理有色金属工业废水研究进展[J]. 贵州大学学报: 自然科学版, 2020(4): 1-9.

    Google Scholar

    [54] SEBBA F. Ion flotation [M]. New York: American Elsevier, 1962.

    Google Scholar

    [55] 韩桂洪, 刘兵兵, 黄艳芳, 等. 一种用于提取稀贵金属的浮游萃取系统: ZL202022863914.4 [P]. 2021-07-09.

    Google Scholar

    [56] TRUONG H T, LEE M S. Separation of rhenium (Ⅶ), molybdenum(Ⅵ), and vanadium(Ⅴ) from hydrochloric acid solution by solvent extraction with TBP[J]. Geosystem Engineering, 2017, 20 (4): 1-7.

    Google Scholar

    [57] 韩桂洪, 刘兵兵, 黄艳芳, 等. 一种基于浮游萃取的溶解态高相似稀贵金属富集分离方法: ZL202010167443.5 [P]. 2020-05-29.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(3432) PDF downloads(1327) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint