Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 5
Article Contents

GUO Haojie, DUAN Zhuo, HUANG Yukun, HUA Quanxian, CAO Yijun. Research Progress of Comprehensive Recovery Rechnology of Secondary Resources Containing Cobalt[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 55-64. doi: 10.13779/j.cnki.issn1001-0076.2021.05.009
Citation: GUO Haojie, DUAN Zhuo, HUANG Yukun, HUA Quanxian, CAO Yijun. Research Progress of Comprehensive Recovery Rechnology of Secondary Resources Containing Cobalt[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 55-64. doi: 10.13779/j.cnki.issn1001-0076.2021.05.009

Research Progress of Comprehensive Recovery Rechnology of Secondary Resources Containing Cobalt

More Information
  • China's cobalt resources are extremely scarce and rely heavily on imports. The prominent contradiction between supply and demand has become the key to restrict the development of China's cobalt industry. The development of recovery and utilization technology of cobalt-containing secondary resources is of great significance to alleviate the contradiction between supply and demand. This paper summarizes the distribution and reserves of cobalt mineral resources, introduces the sources and types of cobalt secondary resources, and focuses on the secondary resources such as cobalt-bearing metallurgical slag, waste alloy, hydrogenation catalyst and waste battery as the main object. the recovery and utilization potential and related technologies of cobalt in cobalt-containing secondary resources are described in detail. The results show that at present, the secondary resources containing cobalt are usually recovered and reused by wet leaching technology, in which the efficient separation of cobalt from impurity elements in the leaching solution containing cobalt is the key link for the recovery of cobalt. Therefore, the development of the system and process of selective leaching and extraction of cobalt is the core to improve the utilization rate of secondary resources containing cobalt.

  • 加载中
  • [1] SAFARZADEH M S, DHAWAN N, BIRINCI M, et al. Reductive leaching of cobalt from zinc plant purification residues [J]. Hydrometallurgy, 2011, 106(1/2): 51-57.

    Google Scholar

    [2] SCHMIDT T, BUCHERT M, SCHEBEK L. Investigation of the primary production routes of nickel and cobalt products used for Li-ion batteries [J]. Resources Conservation and Recycling, 2016, 112: 107-122. doi: 10.1016/j.resconrec.2016.04.017

    CrossRef Google Scholar

    [3] 王海北, 蒋开喜, 林江顺, 等. 废旧锂离子电池钴综合回收技术研究[J]. 日用电器, 2010(9): 15-17. doi: 10.3969/j.issn.1673-6079.2010.09.002

    CrossRef Google Scholar

    [4] WANG S. Cobalt - Its recovery, recycling, and application [J]. Jom, 2006, 58(10): 47-50. doi: 10.1007/s11837-006-0201-y

    CrossRef Google Scholar

    [5] U.S. Depertment Of Energy, Critical materials strategy summary 2010 [M]. U.S. Depertment Of, Energy, 2010.

    Google Scholar

    [6] U.S. Geological Survey, 2019, Mineral commodity summaries 2019 [M]. U.S. Geological Survey, 2019.

    Google Scholar

    [7] 黄晓兵. 中国钴资源安全评估[D]. 北京: 中国地质大学(北京), 2018.

    Google Scholar

    [8] SMITH C G. Always the bridesmaid, never the bride: cobalt geology and resources [J]. Applied Earth Science, 2001, 110(2): 75-80. doi: 10.1179/aes.2001.110.2.75

    CrossRef Google Scholar

    [9] U.S. Geological Survey. Mineral commodity summaries 2021 [M]. U.S. Geological Survey, 2021.

    Google Scholar

    [10] 刘永刚, 何高文, 姚会强, 等. 世界海底富钴结壳资源分布特征[J]. 矿床地质, 2013, 32(6): 1275-1284. doi: 10.3969/j.issn.0258-7106.2013.06.013

    CrossRef Google Scholar

    [11] 张福良, 崔笛, 胡永达, 等. 钴矿资源形势分析及管理对策建议[J]. 中国矿业, 2014, 23(7): 6-10. doi: 10.3969/j.issn.1004-4051.2014.07.002

    CrossRef Google Scholar

    [12] 张富元, 章伟艳, 任向文, 等. 全球三大洋海山钴结壳资源量估算[J]. 海洋学报, 2015, 37(1): 88-105. doi: 10.3969/j.issn.0253-4193.2015.01.010

    CrossRef Google Scholar

    [13] 张伟波, 叶锦华, 陈秀法, 等. 全球钴矿资源分布与找矿潜力[J]. 资源与产业, 2018, 20(4): 56-61.

    Google Scholar

    [14] KAPUSTA J P T. Cobalt production and markets: A brief overview [J]. Jom, 2006, 58(10): 33-36. doi: 10.1007/s11837-006-0198-2

    CrossRef Google Scholar

    [15] HUANG Y, ZHANG Z, CAO Y, et al. Overview of cobalt resources and comprehensive analysis of cobalt recovery from zinc plant purification residue- a review [J]. Hydrometallurgy, 2020, 193: 105327. doi: 10.1016/j.hydromet.2020.105327

    CrossRef Google Scholar

    [16] GOLMOHAMMADZADEH R, FARAJI F, RASHCHI F. Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review [J]. Resources Conservation and Recycling, 2018, 136: 418-435. doi: 10.1016/j.resconrec.2018.04.024

    CrossRef Google Scholar

    [17] WANG Y, ZHOU C S. Hydrometallurgical process for recovery of cobalt from zinc plant residue [J]. Hydrometallurgy, 2002, 63(3): 225-234. doi: 10.1016/S0304-386X(01)00213-4

    CrossRef Google Scholar

    [18] 刘晓剑. 镍钴二次资源回收过程溶液深度净化及材料制备研究[D]. 长沙: 中南大学, 2007.

    Google Scholar

    [19] 唐娜娜, 马少健. 废弃物料中钴、镍的回收[J]. 有色矿冶, 2005(S1): 113-114.

    Google Scholar

    [20] 张建军, 陈为亮, 李照刚. 从钴渣中回收钴的研究进展[J]. 矿产综合利用, 2017(4): 11-15. doi: 10.3969/j.issn.1000-6532.2017.04.003

    CrossRef Google Scholar

    [21] FAN X, TAN C, LI Y, et al. A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi0.5CoO. 2MnO. 3O2 cathode material from spent lithium-ion batteries [J]. J Hazard Mater, 2021, 410: 124610. doi: 10.1016/j.jhazmat.2020.124610

    CrossRef Google Scholar

    [22] JUNG J CY, SUI PC, ZHANG J. A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments [J]. Journal of Energy Storage, 2021, 35: 102217. doi: 10.1016/j.est.2020.102217

    CrossRef Google Scholar

    [23] 孟晗琪, 马光, 吴贤, 等. 镍钴高温合金废料湿法冶金回收[J]. 广州化工, 2012, 40(17): 29-30+43. doi: 10.3969/j.issn.1001-9677.2012.17.012

    CrossRef Google Scholar

    [24] 谭世雄, 申勇峰. 从废高温合金中回收镍钴的工艺[J]. 化工冶金, 2000(3): 294-297. doi: 10.3321/j.issn:1009-606X.2000.03.014

    CrossRef Google Scholar

    [25] RABAH M A, HEWAIDY I F, FARGHALY F E. Recovery of molybdenum and cobalt powders from spent hydrogenation catalyst [J]. Powder Metallurgy, 1997, 40(4): 283-288. doi: 10.1179/pom.1997.40.4.283

    CrossRef Google Scholar

    [26] GHOLAMI R M, BORGHEI S M, MOUSAVI S M. Bacterial leaching of a spent Mo-Co-Ni refinery catalyst using acidithiobacillus ferrooxidans and acidithiobacillus thiooxidans [J]. Hydrometallurgy, 2011, 106(1/2): 26-31.

    Google Scholar

    [27] MARAFI M, STANISLAUS A. Spent hydroprocessing catalyst management: A review Part Ⅱ. Advances in metal recovery and safe disposal methods [J]. Resources Conservation and Recycling, 2008, 53(1/2): 1-26.

    Google Scholar

    [28] LE M N, LEE M S. A review on hydrometallurgical processes for the recovery of valuable metals from spent catalysts and life cycle analysis perspective [J]. Mineral Processing and Extractive Metallurgy Review, 2020, 42(5): 335-354.

    Google Scholar

    [29] MESHRAM P, MISHRA A, ABHILASH, et al. Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids - A review [J]. Chemosphere, 2020, 242: 12591.

    Google Scholar

    [30] 李平, 邓攀, 刘宜强, 等. 从硬质合金磨削废料中综合回收钴试验研究[J]. 湿法冶金, 2017, 36(4): 271-274.

    Google Scholar

    [31] 黄炳光, 谢克难, 解然, 等. 盐酸法处理硬质合金粉双回收Co和WC新工艺研究[J]. 四川有色金属, 2009(2): 30-33. doi: 10.3969/j.issn.1006-4079.2009.02.007

    CrossRef Google Scholar

    [32] 汤青云, 段冬平. 硝酸法处理废硬质合金回收金属钴和碳化钨[J]. 城市学刊, 1996(6): 64-70.

    Google Scholar

    [33] 李强, 李奇勇, 徐叶, 等. 湿法炼锌净化钴渣选择性浸出回收锌与钴[J]. 有色金属(冶炼部分), 2019(4): 6-10. doi: 10.3969/j.issn.1007-7545.2019.04.002

    CrossRef Google Scholar

    [34] MORADKHANI D, SEDAGHAT B, KHODAKARAMI M, et al. Recovery of valuable metals from zinc plant residue through separation between manganese and cobalt with n-n reagent[J]. Physicochemical Problems of Mineral Processing, 2014, 50(2): 735-746.

    Google Scholar

    [35] 刘红斌, 蒋伟, 蒋训雄, 等. 铜转炉渣湿法回收钴[J]. 有色金属(冶炼部分), 2012(2): 19-22. doi: 10.3969/j.issn.1007-7545.2012.02.005

    CrossRef Google Scholar

    [36] 喻正军. 从镍转炉渣中回收钴镍铜的理论与技术研究[D]. 长沙: 中南大学, 2006.

    Google Scholar

    [37] KOJIMA T, SHIMIZU T, SASAI R, et al. Recycling process of WC-Co cermets by hydrothermal treatment [J]. Journal of Materials Science, 2005, 40(19): 5167-5172. doi: 10.1007/s10853-005-4407-0

    CrossRef Google Scholar

    [38] SINHA M K, PRAMANIK S, KUMARI A, et al. Recovery of value added products of Sm and Co from waste SmCo magnet by hydrometallurgical route [J]. Sep Purif Technol, 2017, 179: 1-12. doi: 10.1016/j.seppur.2017.01.056

    CrossRef Google Scholar

    [39] 柳松, 古国榜. 镍基高温合金废料的回收[J]. 无机盐工业, 1997(2): 38-39.

    Google Scholar

    [40] 魏国侠, 孙挺. 电解法回收废镍基高温合金的研究[C]//中国工程院化工、冶金与材料工学部第七届学术会议论文集. 北京: 2009.

    Google Scholar

    [41] CHEN W S, HO H J. Leaching behavior analysis of valuable metals from lithium-ion batteries cathode material [J]. Key Engineering Materials, 2018, 775: 419-426. doi: 10.4028/www.scientific.net/KEM.775.419

    CrossRef Google Scholar

    [42] GUZOLU J S, GHARABAGHI M, MOBIN M, et al. Extraction of Li and Co from Li-ion Batteries by Chemical Methods [J]. Journal of The Institution of Engineers (India): Series D, 2017, 98(1): 43-48. doi: 10.1007/s40033-016-0114-z

    CrossRef Google Scholar

    [43] LEE C K, RHEE K I. Reductive leaching of cathodic active materials from lithium ion battery wastes [J]. Hydrometallurgy, 2003, 68(1-3): 5-10. doi: 10.1016/S0304-386X(02)00167-6

    CrossRef Google Scholar

    [44] VALVERDE I M, Jr., PAULINO J F, AFONSO J C. Hydrometallurgical route to recover molybdenum, nickel, cobalt and aluminum from spent hydrotreating catalysts in sulphuric acid medium [J]. J Hazard Mater, 2008, 160(2/3): 310-317.

    Google Scholar

    [45] BANDA R, NGUYEN T H, SOHN S H, et al. Recovery of valuable metals and regeneration of acid from the leaching solution of spent HDS catalysts by solvent extraction [J]. Hydrometallurgy, 2013, 133: 161-167. doi: 10.1016/j.hydromet.2013.01.006

    CrossRef Google Scholar

    [46] HAMZA M F, ROUX JC, GUIBAL E. Metal valorization from the waste produced in the manufacturing of Co/Mo catalysts: leaching and selective precipitation [J]. Journal of Material Cycles and Waste Management, 2019, 21(3): 525-538. doi: 10.1007/s10163-018-0811-9

    CrossRef Google Scholar

    [47] LEE J C, KIM E Y, KIM J H, et al. Recycling of WC-Co hardmetal sludge by a new hydrometallurgical route [J]. International Journal of Refractory Metals & amp; Hard Materials, 2011, 29(3): 365-371.

    Google Scholar

    [48] 岳松. 废高磁合金钢中钴、镍的分离和利用[J]. 四川环境, 2000, 19(4): 29-31. doi: 10.3969/j.issn.1001-3644.2000.04.009

    CrossRef Google Scholar

    [49] A. R M. Recovery of molybdenum and cobalt powders from spent catalysts [J]. Metal Powder Report, 1998, 53(11): 37.

    Google Scholar

    [50] LI L, GE J, WU F, et al. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant [J]. J Hazard Mater, 2010, 176(1): 288-293.

    Google Scholar

    [51] HE LP, SUN SY, MU YY, et al. Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using l-tartaric acid as a leachant [J]. ACS Sustainable Chemistry & amp; Engineering, 2017, 5(1): 714-721.

    Google Scholar

    [52] SUN L, QIU K. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries [J]. Waste Management, 2012, 32(8): 1575-1582. doi: 10.1016/j.wasman.2012.03.027

    CrossRef Google Scholar

    [53] HUANG Y, GUO H, ZHANG C, et al. A novel method for the separation of zinc and cobalt from hazardous zinc & amp; ndash; cobalt slag via an alkaline glycine solution [J]. Sep Purif Technol, 2021, 273: 119009. doi: 10.1016/j.seppur.2021.119009

    CrossRef Google Scholar

    [54] 王俊杰, 谈定生, 丁家杰, 等. 湿法炼锌渣柠檬酸浸出回收钴、锌和镍[J]. 矿产保护与利用, 2021, 41(2): 137-143.

    Google Scholar

    [55] LI L, LU J, REN Y, et al. Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries [J]. Journal of Power Sources, 2012, 218: 21-27. doi: 10.1016/j.jpowsour.2012.06.068

    CrossRef Google Scholar

    [56] CHEN X P, LUO C B, ZHANG J X, et al. Sustainable recovery of metals from spent lithium-ion batteries: a green process [J]. Acs Sustainable Chemistry & amp; Engineering, 2015, 3(12): 3104-3113.

    Google Scholar

    [57] NAYAKA G P, MANJANNA J, PAI K V, et al. Recovery of valuable metal ions from the spent lithium-ion battery using aqueous mixture of mild organic acids as alternative to mineral acids [J]. Hydrometallurgy, 2015, 151: 73-77. doi: 10.1016/j.hydromet.2014.11.006

    CrossRef Google Scholar

    [58] ZENG X, LI J, SHEN B. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid [J]. J Hazard Mater, 2015, 295: 112-118. doi: 10.1016/j.jhazmat.2015.02.064

    CrossRef Google Scholar

    [59] BEUTHER H, FLINN R A. Technique for removing metal contaminants from catalysts [J]. I & amp; EC Product Research and Development, 1963, 2(1): 53-57.

    Google Scholar

    [60] WU C, LI B, YUAN C, et al. Recycling valuable metals from spent lithium-ion batteries by ammonium sulfite-reduction ammonia leaching [J]. Waste Management, 2019, 93: 153-161. doi: 10.1016/j.wasman.2019.04.039

    CrossRef Google Scholar

    [61] MARCANTONIO P J. Leaching cobalt from metal-containing particles, Google Patents [P]. 1991

    Google Scholar

    [62] CHEN L, TANG X, ZHANG Y, et al. Process for the recovery of cobalt oxalate from spent lithium-ion batteries [J]. Hydrometallurgy, 2011, 108(1): 80-86.

    Google Scholar

    [63] ANGELIDIS T N, TOURASANIDIS E, MARINOU E, et al. Selective dissolution of critical metals from diesel and naptha spent hydrodesulphurization catalysts [J]. Resources, Conservation and Recycling, 1995, 13(3/4): 269-282.

    Google Scholar

    [64] PRANOLO Y, ZHANG W, CHENG C Y. Recovery of metals from spent lithium-ion battery leach solutions with a mixed solvent extractant system [J]. Hydrometallurgy, 2010, 102(1/2/3/4): 37-42.

    Google Scholar

    [65] 叶有明, 谢雪珍, 农永萍. 用常压酸浸—溶剂萃取法从硫锰废渣中回收锰钴镍试验研究[J]. 湿法冶金, 2020, 39(4): 298-303.

    Google Scholar

    [66] 陈亮, 唐新村, 张阳, 等. 从废旧锂离子电池中分离回收钴镍锰[J]. 中国有色金属学报, 2011, 21(5): 1192-1198.

    Google Scholar

    [67] 刘三平, 王海北, 蒋开喜, 等. 钴提取分离技术分析与应用[J]. 有色金属, 2004(2): 73-76. doi: 10.3969/j.issn.2095-1744.2004.02.018

    CrossRef Google Scholar

    [68] 孙明生, 沙涛, 苏凤来. 湿法炼锌净化渣综合回收的生产实践[J]. 矿冶, 2010, 19(1): 73-76.

    Google Scholar

    [69] SONG S L, SUN W, WANG L, et al. Recovery of cobalt and zinc from the leaching solution of zinc smelting slag [J]. J Environ Chem Eng, 2019, 7(1): 102777. doi: 10.1016/j.jece.2018.11.022

    CrossRef Google Scholar

    [70] YANG Y, LEI S, SONG S, et al. Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries [J]. Waste Management, 2020, 102: 131-138. doi: 10.1016/j.wasman.2019.09.044

    CrossRef Google Scholar

    [71] 郭丽萍, 杜小弟, 方伟, 等. Na2S2O3还原溶解LiCoO2及钴、锂分离回收[J]. 应用化学, 2006(10): 1182-1184. doi: 10.3969/j.issn.1000-0518.2006.10.026

    CrossRef Google Scholar

    [72] 黎华玲, 陈永珍, 宋文吉, 等. 湿法回收退役三元锂离子电池有价金属的研究进展[J]. 化工进展, 2019, 38(2): 921-932.

    Google Scholar

    [73] 李冰洁, 廖亚龙, 胡亮, 等. 溶液中钴与镍的深度分离研究进展[J]. 化学工程, 2015, 43(8): 33-37. doi: 10.3969/j.issn.1005-9954.2015.08.008

    CrossRef Google Scholar

    [74] BANZA A N, GOCK E, KONGOLO K. Base metals recovery from copper smelter slag by oxidising leaching and solvent extraction [J]. Hydrometallurgy, 2002, 67(1/2/3): 63-69.

    Google Scholar

    [75] 蔡传算, 刘荣义. 含钴高温合金废料的综合利用[J]. 中国有色金属学报, 1996, 6(1): 49-52. doi: 10.3321/j.issn:1004-0609.1996.01.011

    CrossRef Google Scholar

    [76] 陈奇志, 高锋, 史磊. 全湿法从锰钴镍渣中回收钴、镍的试验研究[J]. 企业技术开发(学术版), 2014(2): 20-22.

    Google Scholar

    [77] 周炳珍. 用P204和P507脱除含钴废料中的杂质生产高纯度氯化钴[J]. 有色金属(冶炼部分), 2002(6): 16-17+44. doi: 10.3969/j.issn.1007-7545.2002.06.005

    CrossRef Google Scholar

    [78] 刘富强, 朱兆华, 邓华利. 废镍催化剂中有价金属回收试验研究[J]. 三峡环境与生态, 2008(2): 21-23+62. doi: 10.3969/j.issn.1674-2842.2008.02.006

    CrossRef Google Scholar

    [79] 张阳, 满瑞林, 王辉, 等. 用P507萃取分离钴及草酸反萃制备草酸钴[J]. 中南大学学报(自然科学版), 2011, 42(2): 317-322.

    Google Scholar

    [80] KANG J, SENANAYAKE G, SOHN J, et al. Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272 [J]. Hydrometallurgy, 2010, 100(3/4): 168-171.

    Google Scholar

    [81] GRANATA G, MOSCARDINI E, PAGNANELLI F, et al. Product recovery from Li-ion battery wastes coming from an industrial pre-treatment plant: Lab scale tests and process simulations [J]. Journal of Power Sources, 2012, 206: 393-401. doi: 10.1016/j.jpowsour.2012.01.115

    CrossRef Google Scholar

    [82] 侯晓川, 肖连生, 高从堦, 等. 从废高温镍钴合金中浸出镍和钴的试验研究[J]. 湿法冶金, 2009, 28(3): 164-169. doi: 10.3969/j.issn.1009-2617.2009.03.008

    CrossRef Google Scholar

    [83] 侯晓川, 肖连生, 高从堦, 等. 废高温镍钴合金浸出液净化试验研究[J]. 有色金属(冶炼部分), 2010(4): 9-11, 21. doi: 10.3969/j.issn.1007-7545.2010.04.003

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(3012) PDF downloads(509) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint