Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 5
Article Contents

LI Jinhui, CHU Yuhang, LONG Guangwu, LIU Wenxin, LIU Jinbiao, WANG Ruixiang, XU Zhifeng. Separation of Rare Earth and Aluminium by Long-chain Polymeric Phosphate Complexation Precipitation[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 12-17. doi: 10.13779/j.cnki.issn1001-0076.2021.05.002
Citation: LI Jinhui, CHU Yuhang, LONG Guangwu, LIU Wenxin, LIU Jinbiao, WANG Ruixiang, XU Zhifeng. Separation of Rare Earth and Aluminium by Long-chain Polymeric Phosphate Complexation Precipitation[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 12-17. doi: 10.13779/j.cnki.issn1001-0076.2021.05.002

Separation of Rare Earth and Aluminium by Long-chain Polymeric Phosphate Complexation Precipitation

More Information
  • In the leaching process of ionic rare earth ore, a large number of non-rare earth impurities such as aluminum ions will also enter the leaching solution. In this paper, the removal of impurity aluminum ions in the rare earth leaching solution was studied. The rare earth elements in the feed solution were selectively precipitated by polybutylene phosphate. The effects of solution pH, amount of polybutylene phosphate, reaction time and reaction temperature on the removal effect of aluminum were investigated respectively. The results show that: polybutylene phosphate is used as a complex precipitation agent, the pH value of the simulated feed liquid is controlled to 2.5, the polybutylene phosphate dosages is m(REG monomer): m(RE3+)= 12:1 equivalent is added, the reaction time is 10 min, the reaction temperature At 50 ℃, the precipitation rate of rare earth is 91.35%, and the precipitation rate of aluminum is 11.22%, which effectively separates rare earth from aluminum.

  • 加载中
  • [1] 张苏江, 张立伟, 张彦文, 等. 国内外稀土矿产资源及其分布概述[J]. 无机盐工业, 2020, 52(1): 9-16.

    Google Scholar

    [2] 胡轶文, 王丽明, 曹钊, 等. 我国稀土资源冶炼分离技术研究进展[J]. 矿产保护与利用, 2020, 40(2): 151-161.

    Google Scholar

    [3] 张博, 宁阳坤, 曹飞, 等. 世界稀土资源现状[J]. 矿产综合利用, 2018(4): 7-12. doi: 10.3969/j.issn.1000-6532.2018.04.002

    CrossRef Google Scholar

    [4] 何耀, 程柳, 李毅, 等. 离子吸附型稀土矿的成矿机理及找矿标志[J]. 稀土, 2015, 36(4): 98-103.

    Google Scholar

    [5] 范飞鹏, 肖惠良, 陈乐柱, 等. 赣南陂头一带风化壳淋积型稀土矿成矿地质特征[J]. 中国稀土学报, 2014, 32(1): 101-107. doi: 10.11785/S1000-4343.20140110

    CrossRef Google Scholar

    [6] 池汝安, 刘雪梅. 风化壳淋积型稀土矿开发的现状及展望[J]. 中国稀土学报, 2019, 37(2): 129-140.

    Google Scholar

    [7] 邱廷省, 伍红强, 方夕辉, 等. 风化壳淋积型稀土矿提取除杂技术现状及进展[J]. 稀土, 2012, 33(4): 81-85. doi: 10.3969/j.issn.1004-0277.2012.04.017

    CrossRef Google Scholar

    [8] 池汝安, 李隆峰, 王淀佐. 吸附稀土的粘土矿离子交换平衡研究[J]. 中南矿冶学院学报, 1991(2): 142-148.

    Google Scholar

    [9] WANG L, LIAO C F, YANG Y M, et al. Effects of organic acids on the leaching process of ion-adsorption type rare earth ore[J]. Journal of Rare Earths, 2017, 35(12): 1233-1238. doi: 10.1016/j.jre.2017.07.001

    CrossRef Google Scholar

    [10] 欧阳克氙, 饶国华, 姚慧琴, 等. 南方稀土矿抑铝浸出研究[J]. 稀有金属与硬质合金, 2003, 31(4): 1-3. doi: 10.3969/j.issn.1004-0536.2003.04.001

    CrossRef Google Scholar

    [11] 任继鹏, 张逸, 钱诚, 等. 南方酸性森林土壤中铝的形态分布与活化机理[J]. 环境化学, 2011, 30(6): 1131-1135.

    Google Scholar

    [12] 田君, 池汝安, 朱国才, 等. 我国南方某类稀土矿中铝的赋存状态[J]. 有色金属, 2000(3): 58-60+65.

    Google Scholar

    [13] 陈志峰, 李金辉, 申邦坡, 等. 离子吸附型稀土矿除铝技术研究进展[J]. 有色金属科学与工程, 2017, 8(2): 112-118.

    Google Scholar

    [14] 潜美丽. 铝对P507体系萃取稀土元素的影响[D]. 沈阳: 东北大学, 2010.

    Google Scholar

    [15] LI H F, GUO F Q, ZHANG Z F, et al. A new hydrometallurgical process for extracting rare earths from apatite using solvent extraction with P350[J]. Journal of Alloys & amp; Compounds, 2006, 408: 995-998.

    Google Scholar

    [16] BELOVA V V, VOSHKIN A A, EGOROVA N S, et al. Solvent extraction of rare earth metals from nitrate solutions with di(2, 4, 4-trimethylpentyl)phosphinate of methyltrioctylammonium[J]. Journal of Molecular Liquids, 2012, 172: 144-146. doi: 10.1016/j.molliq.2012.04.012

    CrossRef Google Scholar

    [17] 杨子超, 王秀山, 张安运, 等. 三正辛基氧化膦萃取钯的研究[J]. 应用化学, 1990(5): 72-76.

    Google Scholar

    [18] LIAO C F, JIAO Y F, LIANG Y, et al. Adsorption-extraction mechanism of heavy rare earth by Cyanex272-P507 impregnated resin[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(8): 1511-1516. doi: 10.1016/S1003-6326(09)60330-7

    CrossRef Google Scholar

    [19] YIN S H, LI S W, WU W Y, et al. Extraction and separation of Ce(Ⅲ) and Pr(Ⅲ) in the system containing two complexing agents with di-(2-ethylhexyl) phosphoric acid[J]. Rsc Advances, 2014, 4(104): 59997-60001. doi: 10.1039/C4RA10143J

    CrossRef Google Scholar

    [20] 张章, 李林艳, 徐盛明, 等. 有机磷萃取剂的合成研究进展[J]. 湿法冶金, 2010, 29(4): 233-237. doi: 10.3969/j.issn.1009-2617.2010.04.006

    CrossRef Google Scholar

    [21] 尹敬群, 付桂明, 万茵, 等. 从风化壳淋积型稀土矿浸取液提取稀土技术与发展[J]. 江西科学, 2012, 30(5): 574-578+616. doi: 10.3969/j.issn.1001-3679.2012.05.007

    CrossRef Google Scholar

    [22] 池汝安, 王博, 李隆峰, 等. 用碳酸氢铵分离铝和稀土的新工艺研究[J]. 精细化工中间体, 1991(3): 35-39.

    Google Scholar

    [23] 谢跃生. 铝盐水解、聚合行为分析[J]. 广西师院学报: 自然科学版, 1994(1): 32-37.

    Google Scholar

    [24] 刘文新, 栾兆坤. 水体中铝(Ⅲ)的化学形态及其生态效应的研究进展[J]. 生态学报, 1996, 16(2): 212-220.

    Google Scholar

    [25] PHILLIPS B L, CASEY W H, KARLSSON M. Bonding and reactivity at oxide mineral surfaces from model aqueous complexes[J]. Nature, 2000, 404(6776): 379. doi: 10.1038/35006036

    CrossRef Google Scholar

    [26] PERRY C C, SHAFRAN K L. The systematic study of aluminium speciation in medium concentrated aqueous solutions[J]. Journal Of Inorganic Biochemistry, 2001, 87(1/2): 115-124.

    Google Scholar

    [27] 陈志峰. 高铝稀土料液除铝工艺研究[D]. 赣州: 江西理工大学, 2018.

    Google Scholar

    [28] 康天飞. 聚合磷酸酯阻燃剂的合成及应用研究[D]. 苏州: 苏州科技大学, 2012.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(2357) PDF downloads(275) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint