Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 4
Article Contents

DING Jiajie, TAN Dingsheng, WANG Junjie, CHEN Zhe, LI Qiwen, YANG Jian, DING Weizhong. Extraction Separation of Zinc and Iron with N263 and Its Thermodynamics[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 70-77. doi: 10.13779/j.cnki.issn1001-0076.2021.04.009
Citation: DING Jiajie, TAN Dingsheng, WANG Junjie, CHEN Zhe, LI Qiwen, YANG Jian, DING Weizhong. Extraction Separation of Zinc and Iron with N263 and Its Thermodynamics[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 70-77. doi: 10.13779/j.cnki.issn1001-0076.2021.04.009

Extraction Separation of Zinc and Iron with N263 and Its Thermodynamics

More Information
  • The extraction of zinc and iron with N263 from chloride solution was studied. The effects of oscillation time, extractant concentration, modifier concentration, phase ratio(O/A), and hydrochloric acid concentration on the extraction rate of zinc and iron were investigated. The results showedthe extraction rate of Zn2+, Fe2+ and Fe3+ were 90.97%, 0.79% and 75.85%, respectively, and the separation coefficient of βZn2+/Fe2+and βZn2+/Fe3+ were 1 260 and 3.21, respectively, under the conditions of extractant composition of 20% N263+20% n-hexanol+60% 260# solvent oil, phase ratio(O/A) of 1 GA6FA 1, oscillation time of 5 min, 25 ℃. Meanwhile, the concentration of zinc in the aqueous phasedecreased from 9.61 g/L to 0.36 g/L by two-stage countercurrent extraction. The stripping rate of Zn2+ was 41.86% and more than 97% of Fe3+ was stripped with 0.5 mol/L sulfuric acid. Additionally, the mechanism of extraction of metal ions by N263 is anion exchange reaction. The extraction equilibrium isotherms of zinc and iron were plotted, and the thermodynamic functions of the extraction reaction were calculated. The results indicated that the extraction of Zn2+ by N263 is exothermic, and the extraction of Fe3+ is endothermic. The extraction of Zn2+ and Fe3+ can proceed spontaneously at room temperature.

  • 加载中
  • [1] 张国华, 朱北平, 陈先友, 等. 湿法炼锌中锌铁分离方法与运用探讨[J]. 有色金属(冶炼部分), 2021(2): 20-26. doi: 10.3969/j.issn.1007-7545.2021.02.003

    CrossRef Google Scholar

    [2] YANH, CHAIL Y, PENGB, et al. A novel method to recover zinc and iron from zinc leaching residue[J]. Minerals Engineering, 2014, 55: 103-110. doi: 10.1016/j.mineng.2013.09.015

    CrossRef Google Scholar

    [3] DUTRA AJB, PAIVA PRP, TAVARES LM. Alkaline leaching of zinc from electric arc furnace steel duste[J]. Minerals Engineering, 2006, 19: 478-485. doi: 10.1016/j.mineng.2005.08.013

    CrossRef Google Scholar

    [4] 付筱芸, 王碧侠, 刘欢, 等. 钢铁厂含锌粉尘处理技术和锌的回收[J]. 热加工工艺, 2019, 48(2): 10-13.

    Google Scholar

    [5] 吴勇基, 李敏, 李楚喜, 等. 含锌含铁废酸处理方法的研究[J]. 广东化工, 2016, 43(7): 144-145. doi: 10.3969/j.issn.1007-1865.2016.07.071

    CrossRef Google Scholar

    [6] SINHA M K, PRAMANIK, SAHU S K, et al. Development of an efficient process for the recovery of zinc and iron asvalue added products from the waste chloride solution[J]. Separation and Purification Technology, 2016, 167: 37-44. doi: 10.1016/j.seppur.2016.04.049

    CrossRef Google Scholar

    [7] FORMANEKJ, JANDOVAJ, CAPEK J. Iron removal from zinc liquors originating from hydrometallurgicalprocessing of spent Zn/MnO2 batteries[J]. Hydrometallurgy, 2013, 138: 100-105. doi: 10.1016/j.hydromet.2013.06.010

    CrossRef Google Scholar

    [8] MIESIAC I. Removal of zinc(Ⅱ) and iron(Ⅱ) from spent hydrochloric acid by means of anionic resins[J]. Industrial & Engineering Chemistry Researach, 2005, 44(4): 1004-1011.

    Google Scholar

    [9] MACHADO R M, GAMEIRO M L F, KRUPA M, et al. Selective separation and recovery of zinc and lead from galvanizing industrial effluents by anion exchange[J]. Separation Science and Technology, 2015, 50(17): 2726-2736.

    Google Scholar

    [10] SINHA M K, SAHU S K, MESHRAM P, et al. Solvent extraction and separation of zinc and iron from spent pickle liquor[J]. Hydrometallurgy, 2014, 147: 103-111.

    Google Scholar

    [11] RANDAZZO S, CARUSO V, CIAVARDELLI D, et al. Recovery of zinc from spent pickling solutions by liquid- liquid extraction usingTBP[J]. Desalination and Water Treatment, 2019, 157: 110-117. doi: 10.5004/dwt.2019.24111

    CrossRef Google Scholar

    [12] MANSUR M B, FERREIRA ROCHA S D, et al. Selective extraction of zinc(Ⅱ) over iron(Ⅱ) from spent hydrochloric acid pickling effluents by liquid-liquid extraction[J]. Journal of Hazardous Materials, 2008, 150(3): 669-678. doi: 10.1016/j.jhazmat.2007.05.019

    CrossRef Google Scholar

    [13] LONG H Z, CHAI L Y, QIN W Q, et al. Solvent extraction of zinc from zinc sulfate solution[J]. Journalof Central South University of Technology, 2010, 17(4): 760-764. doi: 10.1007/s11771-010-0553-x

    CrossRef Google Scholar

    [14] MARSZALKOWSKA B, REGEL-ROSOCKA M, NOWAK L, et al. Quaternary phosphonium salts as effective extractants of zinc(Ⅱ) and iron(Ⅲ) ions from acidic pickling solutions[J]. Polish Journal of Chemical Technology, 2010, 12(4): 1-5. doi: 10.2478/v10026-010-0039-5

    CrossRef Google Scholar

    [15] 李强, 肖连生, 张贵清, 等. 季铵盐N263萃取分离钨酸钠中的钒[J]. 稀有金属与硬质合金, 2017, 45(2): 20-27.

    Google Scholar

    [16] 陈金清, 林凯, 熊家任, 等. 改性季铵盐从高碱度溶液中萃取钒的研究[J]. 有色金属科学与工程, 2015, 6(2): 21-26.

    Google Scholar

    [17] 卢博, 谢方浩, 邓声华, 等. N263-仲辛醇-煤油体系萃取分离钨钼[J]. 硬质合金, 2011, 28(5): 311-315. doi: 10.3969/j.issn.1003-7292.2011.05.008

    CrossRef Google Scholar

    [18] 叶素妹. 镀锌废酸中铁、锌含量的测定方法[J]. 化学分析计量, 2009, 18(1): 52-55.

    Google Scholar

    [19] 汪家鼎, 陈家镛. 溶剂萃取手册[M]. 北京: 化学工业出版社, 2001: 26-27.

    Google Scholar

    [20] CIERPISZEWSKI R, MIESIAC I, REGEL-ROSOCKA M, et al. Removal of zinc(Ⅱ) from spent hydrochloric acid solutions from zinc hot galvanizing plants[J]. Industrial & engineering chemistry research, 2002, 41(3): 598-603.

    Google Scholar

    [21] 张启修, 张贵清, 唐瑞仁, 等. 萃取冶金原理与实践[M]. 湖南: 中南大学出版社, 2014: 537-539.

    Google Scholar

    [22] LEE MS. Use of the Bromley equation for the analysis of ionic equilibria in mixed ferric and ferrous chloride solutions at 25℃[J]. Metallurgical and materials transactions B-process metallurgy and materials processing science, 2006, 37(2): 173-179. doi: 10.1007/BF02693146

    CrossRef Google Scholar

    [23] 丁扬力, 肖连生, 曹佐英, 等. N263从钼酸钠溶液中萃取分离钼钒[J]. 有色金属科学与工程, 2017, 8(1): 15-20.

    Google Scholar

    [24] 朱屯. 萃取与离子交换[M]. 北京: 冶金工业出版社, 2005: 67-69.

    Google Scholar

    [25] 李洪桂. 湿法冶金学[M]. 湖南: 中南大学出版社, 2002: 345-347.

    Google Scholar

    [26] 杨佼庸, 刘大星. 萃取[M]. 北京: 冶金工业出版社, 1988: 37-38.

    Google Scholar

    [27] REGEL-ROSOCKA M, WISNIEWSKI M. Selective removal of zinc(Ⅱ) from spent pickling solutions in the presence of iron ions with phosphonium ionic liquid Cyphos IL 101[J]. Hydrometallurgy, 2011, 110(1-4): 85-90. doi: 10.1016/j.hydromet.2011.08.012

    CrossRef Google Scholar

    [28] 徐光宪. 萃取化学原理[M]. 上海: 上海科学技术出版社, 1984: 25-26.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(4)

Article Metrics

Article views(2875) PDF downloads(114) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint