Citation: | ZHANG Yanjia, TANG Chang, LIU Shengyu, LI Bao. Study on Mechanical Grinding Characteristics of Refining Slag[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 64-69. doi: 10.13779/j.cnki.issn1001-0076.2021.04.008 |
In order to improve the comprehensive utilization efficiency of refining slag and reduce the stacking of refining slag. In this paper, the refining slag of Handan Iron and Steel Group was used as raw material, and the surface area meter, laser particle size meter and X-ray diffraction are used to characterize the refining slag after grinding.The physical properties of refining slag powder were studied by mortar test and slurry test. The results show that mechanical grinding can effectively reduce the particle size and increase the specific surface area of refining slag, and the basic phase composition of refining slag remains unchanged after grinding; Mechanical grinding has a significant effect on the setting time, standard consistency value and activity index of refining slag powder; Under the condition of 80 min grinding, the standard consistency value of refining slag is 27.5%, the setting time is 31 min and the 28 d activity index is 84%, which provides experimental basis and theoretical support for the comprehensive utilization of refining slag in the field of building materials.
[1] | 杜昀聪, 伊元荣, 何秉宇. LF精炼渣物化特性及综合利用[J]. 环境科学与技术, 2019, 42(4): 88-94+102. |
[2] | 方明航, 伊元荣, 马文青, 等. 温度对精炼渣碳酸化效果影响分析[J]. 硅酸盐通报, 2020, 39(12): 3905-3912. |
[3] | 刘航航, 刘朝阳, 邵伟. LF精炼废渣资源循环利用综述[J]. 炼钢, 2015, 31(2): 73-78. |
[4] | 李颖, 汪坤, 梁文特, 等. 邯钢LF精炼渣水化特性[J]. 中南大学学报(自然科学版), 2021, 52(2): 339-349. |
[5] | ADESANYA E, OHENOJA K, KINNUNEN P, et al. Properties and durability of alkali-activated ladle slag[J]. Materials and Structures, 2017, 50(6). |
[6] | ADESANYA E, SREENIVASAN H, M. KANTOLA A, et al. Ladle slag cement-Characterization of hydration and conversion[J]. Construction and Building Materials, 2018, 193: 128-134. doi: 10.1016/j.conbuildmat.2018.10.179 |
[7] | HENRíQUEZ P A, APONTE D, IBáEZ-INSA J, et al. Ladle furnace slag as a partial replacement of Portland cement[J]. Construction and Building Materials, 2021: 1-18. |
[8] | NGUYEN H, ADESANYA E, OHENOJA K, et al. Byproduct-based ettringite binder: a synergy between ladle slag and gypsum[J]. Construction and Building Materials, 2019, 197: 143-151. doi: 10.1016/j.conbuildmat.2018.11.165 |
[9] | 赵越, 王晓岩, 苑文仪, 等. 机械力化学活化煤矸石一步制备高效混凝剂[J]. 矿产保护与利用, 2020, 40(1): 16-22. |
[10] | 高树军, 吴其胜, 张少明. 机械力化学方法活化矿渣研究[J]. 南京工业大学学报(自然科学版), 2002(6): 61-65. doi: 10.3969/j.issn.1671-7627.2002.06.014 |
[11] | 温金保, 陆雷. 机械力化学作用活化钢渣的研究[J]. 硅酸盐通报, 2006(4): 89-92+136. doi: 10.3969/j.issn.1001-1625.2006.04.021 |
[12] | 吴辉, 倪文, 仇夏杰, 等. 机械活化对热闷法钢渣胶凝活性的影响[J]. 硅酸盐通报, 2014, 33(6): 1550-1555. |
[13] | 张永娟, 郇坤, 冯蕾. 机械活化和粉磨助剂对矿渣微粉作用的研究[J]. 粉煤灰综合利用, 2013(1): 29-33+37. doi: 10.3969/j.issn.1005-8249.2013.01.008 |
[14] |
李茂辉. 低活性水淬渣基早强充填胶凝材料开发与水化机理研究[D]. 北京: 北京科技大学, 2015. |
[15] | 崔孝炜, 冷欣燕, 南宁, 等. 机械力活化对钢渣粒度分布和胶凝性能的影响[J]. 硅酸盐通报, 2018, 37(12): 3821-3826. |
[16] | 崔孝炜, 狄燕清, 邓婉心, 等. 铁尾矿机械力粉磨特性的基础研究[J]. 非金属矿, 2020, 1(43): 73-75. |
[17] | 刘璇, 李如燕, 崔孝炜, 等. 机械力对高硅钒尾矿活化性能的影响[J]. 硅酸盐通报, 2019, 8(38): 2662-2667. |
[18] | 黄晓燕, 倪文, 祝丽萍. 齐大山铁尾矿粉磨特性[J]. 北京科技大学学报, 2010, 32(10): 1253-1257. |
[19] | 于锦, 李伟峰, 胡月阳, 等. CSA水泥作为矿物外加剂对硅酸盐水泥性能及水化的影响[J]. 硅酸盐通报, 2016, 6(35): 1772-1779. |
[20] | PAPAYIANNI I, ANASTASIOU E. Effect of granulometry on cementitious properties of ladle furnace slag[J]. Cement & Concrete Composites, 2012, (32): 400-407. |
[21] | 崔孝炜, 狄燕清, 南宁. 钢渣的机械力粉磨特性[J]. 矿产保护与利用, 2017(5): 77-81. |
[22] | 王洪镇, 邵方杰, 曹万智, 等. 普硅水泥和低碱度硫铝酸盐水泥复合体系性能的研究[J]. 混凝土, 2018(9): 89-92. doi: 10.3969/j.issn.1002-3550.2018.09.019 |
XRD patterns of refining slag
Specific surface area of refining slag powder at different grinding times
Effect of different grinding time on particle size of refining slag
XRD patterns of refining slag with different grinding time
Activity index of refining slag at different grinding time
Standard consistency and setting time of refining slag with different grinding time