Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 4
Article Contents

HU Jingwen, WANG Yanhong, GU Guohua, WU Bichao. Research Progress on Purification Technology and Mechanism of Mineral Processing Wastewater[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 35-42. doi: 10.13779/j.cnki.issn1001-0076.2021.04.004
Citation: HU Jingwen, WANG Yanhong, GU Guohua, WU Bichao. Research Progress on Purification Technology and Mechanism of Mineral Processing Wastewater[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 35-42. doi: 10.13779/j.cnki.issn1001-0076.2021.04.004

Research Progress on Purification Technology and Mechanism of Mineral Processing Wastewater

More Information
  • Corresponding author: GU Guohua  
  • Mineral processing wastewater is one of the main sources of mine environmental pollution. Most of the residual flotation reagents in the waste water are difficult to degradation of organic compounds which are usually have stronger biological toxicity and difficult to natural degradation. If discharged directly into the natural environment, it will cause serious pollution to environment and water body. After effective treatment, it can meet the wastewater discharge standard and can be reused in the process of mineral dressing. In this paper, the specific sources, characteristics and hazards of mineral processing wastewater were deeply analyzed. Several common wastewater treatment methods and their mechanisms in physical, chemical and biological treatment methods were reviewed, including physical adsorption method, filtration method, aerobic-anaerobic degradation, Fenton oxidation, advanced persulfate oxidation method and so on. The achievements and the deficiencies of refractory organic compounds treatment in ore dressing wastewater's are summarized. The future research and development direction of mineral processing wastewater treatment technology are prospected. The development and application of economic, efficient, green mineral processing wastewater treatment technology are the key to reduce mineral processing wastewater pollution to the environment. protect the environment and achieve low cost and effective treatment of mineral processing wastewater.

  • 加载中
  • [1] 刘琳. 金属选矿废水处理技术的研究现状与发展[J]. 科技视界, 2014(11): 302-311.

    Google Scholar

    [2] 唐明刚, 张红地. 选矿废水处理及回用技术探讨[J]. 冶金与材料, 2019, 39(6): 100-101.

    Google Scholar

    [3] 赵文婕. 苯胺废水处理方法的研究[D]. 石家庄: 河北科技大学, 2012.

    Google Scholar

    [4] 马荣骏. 工业废水的治理[M]. 长沙: 中南工业大学出版社. 1989: 169-213.

    Google Scholar

    [5] 彭新平, 陈伟, 吴兆清. 硫化铅锌矿选矿废水处理与回用技术研究[J]. 湖南有色金属, 2010, 26(2): 40-42. doi: 10.3969/j.issn.1003-5540.2010.02.012

    CrossRef Google Scholar

    [6] 马杰, 王建国. 河东金矿选矿废水循环利用实践[J]. 黄金, 2002, 23(8): 39-42. doi: 10.3969/j.issn.1001-1277.2002.08.011

    CrossRef Google Scholar

    [7] 夏丽娟. 选矿废水中残留黄药的生化处理研究[D]. 昆明理工大学, 2015.

    Google Scholar

    [8] 李洪枚. 选矿废水处理回用方法与工程应用[J]. 湿法冶金, 2015, 34(6): 439-443.

    Google Scholar

    [9] 张秀芳. 矿产资源开发中的废水问题[C]//中国地质矿产经济学会学术年会. 2007.

    Google Scholar

    [10] 严群, 谢明辉, 罗仙平. 会理锌矿选矿废水循环利用的研究[J]. 给水排水, 2006, 32(4): 54-56. doi: 10.3969/j.issn.1002-8471.2006.04.016

    CrossRef Google Scholar

    [11] 赵永斌, 等. 混凝吸附处理选矿废水的研究[J]. 广东工业大学学报, 2001, 18(4): 94-97. doi: 10.3969/j.issn.1007-7162.2001.04.021

    CrossRef Google Scholar

    [12] 欧阳魁. 臭氧法处理硫化矿选矿废水的新工艺及其机理研究[D]. 长沙: 中南大学, 2009.86.

    Google Scholar

    [13] 董栋等. 铅锌矿选矿废水处理与回用试验研究[J]. 有色金属(选矿部分), 2012(3): 28-31. doi: 10.3969/j.issn.1671-9492.2012.03.008

    CrossRef Google Scholar

    [14] CHEN SH. Primary biodegradation of sulfide mineral flotation collectors[J]. Minerals Engineering, 2011, 24(8): 953-955. doi: 10.1016/j.mineng.2011.01.003

    CrossRef Google Scholar

    [15] 刘绪光. 吉恩铜镍选厂选矿废水循环利用生产实践[J]. 矿产保护与利用, 2009(3): 55-58. doi: 10.3969/j.issn.1001-0076.2009.03.015

    CrossRef Google Scholar

    [16] 吴兆清, 应莉莉, 彭文胜. 铅锌选矿厂废水回用研究[J]. 湖南有色金属, 2003, 19(3): 8-10. doi: 10.3969/j.issn.1003-5540.2003.03.003

    CrossRef Google Scholar

    [17] 张艳, 戴晶平. 凡口铅锌矿选矿废水资源化研究与应用[J]. 有色金属(选矿部分), 2007(6): 33-35. doi: 10.3969/j.issn.1671-9492.2007.06.009

    CrossRef Google Scholar

    [18] 刘馥雯, 郭琳, 刘晨, 等. 选矿废水处理及回用技术进展[J]. 有色金属科学与工程, 2017, 8(1): 134-138.

    Google Scholar

    [19] 董栋, 郭保万, 孙伟, 等. 铅锌选矿废水净化处理试验[J]. 现代矿业, 2013, 20(9): 143-145. doi: 10.3969/j.issn.1674-6082.2013.09.054

    CrossRef Google Scholar

    [20] 程伟, 张覃, 马文强. 活性炭对浮选废水中黄药的吸附特性研究[J]. 矿物学报, 2010(2): 113-118.

    Google Scholar

    [21] 戴威. 化工废水处理问题探略[J]. 环境与发展, 2020, 32(10): 44+46.

    Google Scholar

    [22] 张国胜, 谷和平, 邢卫红, 等. 无机陶瓷膜处理冷轧乳化液废水[J]. 高校化学工程学报, 1998(3): 81-85.

    Google Scholar

    [23] 尚殿辉, 杨化鹏. 用增压过滤法处理污水试样[J]. 环境保护与循环经济, 1994, 14(4): 70-72.

    Google Scholar

    [24] 李学忠, 刘源, 刘俊峰. 炉渣过滤-树脂吸附法处理焦化废水的研究[J]. 矿业工程研究, 2007, 29(1): 61-63.

    Google Scholar

    [25] 张国胜, 谷和平, 邢卫红, 等. 无机陶瓷膜处理冷轧乳化液废水[J]. 高校化学工程学报, 1998(3): 81-85.

    Google Scholar

    [26] 孙德栋, 张启修. 用超滤法处理回用生活污水[J]. 中南大学学报(自然科学版), 2003, 34(2): 144-147. doi: 10.3969/j.issn.1672-7207.2003.02.010

    CrossRef Google Scholar

    [27] 卢荣, 袁延峰, 卢行芳, 等. 膜分离法制革污水处理工艺的研究[J]. 陕西科技大学学报(自然科学版), 2005, 23(6): 69-72. doi: 10.3969/j.issn.1000-5811.2005.06.016

    CrossRef Google Scholar

    [28] SUN SP, LI CJ, SUN JH, et al. Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study[J]. Journal of Hazardous Materials, 2009, 161(2/3): 1052-1057.

    Google Scholar

    [29] 刘晶冰, 燕磊, 白文荣, 等. 高级氧化技术在水处理的研究进展[J]. 水处理技术, 2011, 37(3): 11-17.

    Google Scholar

    [30] SHI Q, LI A, QING Z, et al. Oxidative degradation of Orange G by persulfate activated with iron-immobilized resin chars[J]. Journal of Industrial and Engineering Chemistry, 2015, 25: 308-313. doi: 10.1016/j.jiec.2014.11.010

    CrossRef Google Scholar

    [31] 张亚雪, 王少坡, 常晶, 等. 水中医药品的污染现状及高级氧化处理[J]. 工业水处理, 2019, 39(3): 11-16.

    Google Scholar

    [32] 赵妍. 高级氧化技术处理难降解有机污染物研究进展[J]. 广东化工, 2019, 46(4): 93-98. doi: 10.3969/j.issn.1007-1865.2019.04.044

    CrossRef Google Scholar

    [33] 赵永红, 姜科. Fenton试剂去除选矿废水中黄药的试验研究[J]. 江西理工大学学报, 2009, 30(5): 33-36.

    Google Scholar

    [34] KATSOYIANNIS IA, RUETTIMANN T, HUG SJ. pH dependence of Fenton reagent generation and As(Ⅲ) oxidation and removal by corrosion of zero valent iron in aerated water[J]. Environmental science & technology, 2008, 42(19): 7424-7430.

    Google Scholar

    [35] 艾军勇, 张道勇, 牟书勇, 等. 超声波/紫外线-Fenton反应联用去除克拉玛依土壤中石油类污染物[J]. 环境工程学报, 2012, 6(3): 983-988.

    Google Scholar

    [36] 许宜铭, 吕惠卿. 光化学法降解水中氯代苯酚的研究进展[J]. 上海环境科学, 2000(7): 313-316.

    Google Scholar

    [37] 刘守新, 刘鸿. 光催化及光电催化基础与应用[M]. 北京: 化学工业出版社, 2006.

    Google Scholar

    [38] 钱正刚, 黄新文, 何志桥, 等. 臭氧氧化处理苯胺废水[J]. 水处理技术, 2006(3): 29-31. doi: 10.3969/j.issn.1000-3770.2006.03.008

    CrossRef Google Scholar

    [39] HUANG KC, ZHAO ZQ, HOAG GE, et al. Degradation of volatile organic compounds with thermally activated persulfate oxidation[J]. Chemosphere, 2005, 61(4): 551-560. doi: 10.1016/j.chemosphere.2005.02.032

    CrossRef Google Scholar

    [40] ADITYA R, SOUHAIL RA, DIONYSIOS DD. Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems[J]. Applied Catalysis B: Environmental, 2009, 85: 171-179. doi: 10.1016/j.apcatb.2008.07.010

    CrossRef Google Scholar

    [41] SAMIA BH, ZHAO FP, ZAHRAAHR S, et al. Degradation and mineralization of phenol in aqueous medium by heterogeneous monopersulfate activation on nanostructured cobalt based-perovskite catalysts ACoO3 (A=La, Ba, Sr and Ce): Characterization, kinetics and mechanism study[J]. Applied Catalysis B: Environmental, 2017, 215: 60-73. doi: 10.1016/j.apcatb.2017.05.051

    CrossRef Google Scholar

    [42] 肖鹏飞, 姜思佳. 活化过硫酸盐氧化法修复有机污染土壤的研究进展[J]. 化工进展, 2018, 37(12): 4862-4873.

    Google Scholar

    [43] 高焕方, 龙飞, 曹园城, 等. 新型过硫酸盐活化技术降解有机污染物的研究进展[J]. 环境工程学报, 2015, 9(12): 5659-5664. doi: 10.12030/j.cjee.20151202

    CrossRef Google Scholar

    [44] HEIDT LJ. The photolysis of persulfate[J]. Journal of chemical physics, 1942, 10(5): 297. doi: 10.1063/1.1723724

    CrossRef Google Scholar

    [45] DOGLIOTTI L, HAYON E. Flash photolysis of per[oxydi] sulfate ions in aqueous solutions. The sulfate and ozonide radical anions[J]. Journal of Physical Chemistry, 1967, 71(8): 2511-2516. doi: 10.1021/j100867a019

    CrossRef Google Scholar

    [46] XIE P, MA J, WEI L, et al. Removal of 2-MIB and geosmin using UV/persulfate: Contributions of hydroxyl and sulfate radicals[J]. Water Research, 2015, 69: 223-233. doi: 10.1016/j.watres.2014.11.029

    CrossRef Google Scholar

    [47] GAO YQ, GAO NY, DENG Y, et al. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water[J]. Chemical Engineering Journal, 2012: 195-196.

    Google Scholar

    [48] GAO YQ, GAO N Y, DENG Y, et al, Degradation of florfenicol in water by UV/Na2O2S8 process[J]. Environmental Science & Pollution Research International, 2015, 22(11): 8693-701.

    Google Scholar

    [49] ASGARI G, SEIDMOHAMMADI AM, CHAVOSHANI A. Pentachlorophenol removal from aqueous solutions by microwave/persulfate and microwave/H2O2: a comparative kinetic study[J]. Journal of Environmental Health Science & Engineering, 2014, 12(1): 1-7.

    Google Scholar

    [50] KASIRI MB, KHATAEE AR. Photooxidative decolorization of two organic dyes with different chemical structures by UV/H2O2 process: Experimental design[J]. Desalination, 2011, 270(1): 151-159.

    Google Scholar

    [51] ZRINYI N, PHAM LT. Oxidation of benzoic acid by heat-activated persulfate: Effect of temperature on transformation pathway and product distribution[J]. Water Research, 2017, 120: 43-51. doi: 10.1016/j.watres.2017.04.066

    CrossRef Google Scholar

    [52] WALDEMER R H, TRATNYEK P G, JOHNSON R L, et al. Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products[J]. Environmental Science & Technology, 2007, 41(3): 1010-1015.

    Google Scholar

    [53] A K C H, A Z Z, B G E H, et al. Degradation of volatile organic compounds with thermally activated persulfate oxidation[J]. Chemosphere, 2005, 61(4): 551-560. doi: 10.1016/j.chemosphere.2005.02.032

    CrossRef Google Scholar

    [54] FURMAN OS, TEEL AL, WATTS RJ. Mechanism of base activation of persulfate[J]. Environmental Science & Technology, 2010, 44(16): 6423-6428.

    Google Scholar

    [55] 王继鹏, 等. Fe~(2+)活化过硫酸钠降解1, 2-二氯苯. 环境工程学报, 2014(9): 3767-3772.

    Google Scholar

    [56] 左传梅. Fe(Ⅱ)活化过硫酸盐高级氧化技术处理染料废水研究[D]. 重庆大学, 2012: 84.

    Google Scholar

    [57] ZHU X, DU E, DING H, et al. QSAR modeling of VOCs degradation by ferrous-activated persulfate oxidation[J]. Desalination & Water Treatment, 2016, 57(27): 1-15.

    Google Scholar

    [58] 王展. Fe(Ⅲ)/过硫酸盐体系降解有机污染物及其机理研究[D]. 上海大学, 2015: 96.

    Google Scholar

    [59] 赵妍. 高级氧化技术处理难降解有机污染物研究进展[J]. 广东化工, 2019, 46(4): 93-98. doi: 10.3969/j.issn.1007-1865.2019.04.044

    CrossRef Google Scholar

    [60] WU BC, DENG S, WANG HY, et al. Insight into the degradation of ammonium dibutyl dithiophosphate by naturalpyrrhotite-activated peroxydisulfate: activation mechanisms, DFT studies[J]. Chemical Engineering Journal. 2020, 401(1): 126105.

    Google Scholar

    [61] 韩仪, 黄明杰, 周涛, 等. 氧化铜活化过硫酸盐的界面反应机理[J/OL]. 环境化学, 2020(3): 735-744.

    Google Scholar

    [62] 王艳, 李春花, 龚畏, 等. 四氧化三铁活化过硫酸盐降解活性黑5[J]. 环境污染与防治, 2018, 40(8): 860-865.

    Google Scholar

    [63] NIU L, XIAN G, LONG Z, et al. MnCeOX with high efficiency and stability for activating persulfate to degrade AO7 and ofloxacin[J], Ecotoxicology and Environmental Safety, 2020, 191: 110228. doi: 10.1016/j.ecoenv.2020.110228

    CrossRef Google Scholar

    [64] 陈小清. 一株苯胺黑药降解菌的降解酶及降解机理的研究[D]. 广州: 广东工业大学, 2013.

    Google Scholar

    [65] 王琪, 刘辉, 姜林, 等. 外源营养物质对土壤中六氯苯厌氧降解效能的影响[J]. 环境工程学报, 2014, 8(10): 4480-4485.

    Google Scholar

    [66] 韦焕. 厌氧酸化技术在聚甲醛废水处理中的应用[J]. 低碳世界, 2017(31): 7-8. doi: 10.3969/j.issn.2095-2066.2017.31.005

    CrossRef Google Scholar

    [67] 周楚缘, 彭星星, 贾晓珊. 活性污泥降解四溴双酚A的特性、途径及毒性评估[J]. 环境科学学报, 2019, 39(9): 2928-2937.

    Google Scholar

    [68] 金馥. 电极生物膜法降解有机污染物的机理研究[D]. 天津: 天津大学, 2008.

    Google Scholar

    [69] 宋卫锋, 唐铁柱, 林梓河, 等. 生物接触氧化法处理选矿废水的影响因素[J]. 环境工程学报, 2013, 7(2): 603-607.

    Google Scholar

    [70] 刘诗一. 厌氧/好氧生物膜法处理腈纶废水的中试研究[D]. 邯郸: 河北工程大学, 2012.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(1)

Article Metrics

Article views(3033) PDF downloads(229) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint