Citation: | LIU Wei, WANG Jun, DUAN Lianxin, JIANG Shaojun. Ozone Oxidation-biochemical Method Combined Treatment of Fankou Lead-zinc Mine Wastewater and Recycling[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 28-34. doi: 10.13779/j.cnki.issn1001-0076.2021.04.003 |
This study was analyzing the beneficiation wastewater of Fankou lead-zinc mine and meeting the technical upgrade requirements, the research on the treatment of wastewater with the technology of "initial oxidation+pretreatment+biochemical treatment" was carried out to explore the wastewater with different ozone, catalytic oxidation time and different hydraulic retention time. Moreover, the influence of wastewater reuse after treatment on mineral processing index was investigated, and the feasibility of the process was evaluated. The results show that O3 was used to directly or indirectly oxidize the residual organic chemicals in the wastewater in the initial oxidation, ; the co-pretreatment removes Ca2+ and heavy metals in the wastewater; the subsequent biochemical treatment further improves the quality of the water. In addition, the ozone concentration is 60 mg/L, the catalytic oxidation time is 20 min, and the hydraulic retention time is 16.71 h, which can reduce the wastewater COD concentration to 34.32 mg/L, and the removal rate is 91.9%. Further research shows that the increase in hydraulic retention time and ozone concentration significantly improves the wastewater treatment effect. Reusing the treated wastewater for ore beneficiation can effectively eliminate the influence of reused water on the instability factors of ore beneficiation, and it is close to the beneficiation index of clean water. Under stable operation, this process can not only realize the efficient treatment and reuse of mineral processing wastewater, but also has a lower processing cost of 2.65 ¥/m3, which can provide usable technical experience for the reuse of wastewater from domestic lead-zinc processing plants.
[1] | 史宇驰, 邹勤, 陶镇, 等. 湖南某多金属矿选矿废水处理回用试验研究[J]. 中国钨业, 2015, 30(5): 34-38. doi: 10.3969/j.issn.1009-0622.2015.05.006 |
[2] | 顾泽平. 含苯胺黑药废水的物化净化特性研究[D]. 广州: 广东工业大学, 2006: 41-42. |
[3] | 张辉, 周晓彤, 邱显扬. 多金属硫化矿选矿废水处理的研究现状[J]. 材料研究与应用, 2015, 9(4): 226-230. doi: 10.3969/j.issn.1673-9981.2015.04.004 |
[4] | 张东方, 陈涛. 接触氧化法处理铅锌矿选矿废水试验研究[J]. 广东化工, 2012, 39(6): 285-287. doi: 10.3969/j.issn.1007-1865.2012.06.154 |
[5] | 敖顺福. 典型铅锌选矿厂废水零排放工艺对比分析[J]. 矿产保护与利用, 2021, 41(1): 38-45. |
[6] | 陈伟, 彭新平, 陈代雄. 某铅锌矿选矿废水处理复用与零排放试验研究[J]. 环境工程, 2011, 29(3): 37-39. |
[7] | 杨建文. 盘龙铅锌矿铅锌选矿废水处理及循环回用研究[J]. 有色金属工程, 2018(2): 133-138. |
[8] | 华金铭, 魏可镁, 郑起, 等. 物化-生化组合工艺处理提铜选矿药剂生产废水中试验研究[J]. 环境工程学报, 2013, 7(1): 207-213. |
[9] | 张辉, 周晓彤, 邱显扬. 多金属硫化矿选矿废水处理的研究现状[J]. 材料研究与应用, 2015, 9(4): 226-230. doi: 10.3969/j.issn.1673-9981.2015.04.004 |
[10] | 严群, 桂勇刚, 周娜娜, 等. 混凝沉淀法处理含砷选矿废水[J]. 环境工程学报, 2014, 8(9): 3683-3688. |
[11] | 张艳, 戴晶平, 张康生. 凡口矿选矿废水处理与利用试验研究[J]. 矿冶工程, 2008, 28(3): 45-48. doi: 10.3969/j.issn.0253-6099.2008.03.012 |
[12] | 黄红军. 广东某铅锌矿选矿废水资源化处理[J]. 矿产综合利用, 2012(2): 37-42. |
[13] | 冯秀娟, 刘祖文, 朱易春. 混凝剂处理选矿废水的研究[J]. 矿冶工程, 2005, 25(4): 27-29. doi: 10.3969/j.issn.0253-6099.2005.04.008 |
[14] | 王自超, 刘兴宇, 宋永胜. 臭氧生物活性炭工艺处理某多金属硫化矿浮选废水的小试研究[J]. 环境工程学报, 2013, 7(5): 1723-1728. |
[15] | 阳承胜, 蓝崇钰. 宽叶香蒲人工湿地对铅/锌矿废水净化效能的研究[J]. 深圳大学学报: 理工版, 2000(Z1): 51-57. |
[16] | 林伟雄, 许娉婷, 武纯. 采用浸没式膜生物反应器处理苯胺黑药浮选废水[J]. 中国有色金属学报, 2016(11): 2461-2468. |
[17] | Gunten, U. V. (2003). Ozonation of drinking water: part I. Oxidation kinetics and product formation[J]. Water Research, 2003, 37(7): 1443-1467. doi: 10.1016/S0043-1354(02)00457-8 |
[18] | 王亮华, 许伟航, 傅平丰, 等. 浮选废水中共存离子对臭氧氧化苯胺黑药的影响研究[J]. 矿产保护与利用, 2021, 41(1): 1-8. |
[19] | 姜智超, 余侃萍, 张玉凤. 臭氧氧化-循环喷淋法处理钨钼选矿废水[J]. 矿冶工程, 2020, 40(3): 75-78. doi: 10.3969/j.issn.0253-6099.2020.03.020 |
[20] | 雷金勇, 王利国, 黄伟, 等. 铅锌矿选矿废水的节水工艺与重金属的低成本处理技术[J]. 资源节约与环保, 2016(6): 64-65. doi: 10.3969/j.issn.1673-2251.2016.06.046 |
[21] | 潘菊芬. 铅锌矿选矿废水的节水工艺与重金属的低成本处理技术分析[J]. 世界有色金属, 2018(5): 24-25. |
Research process flow chart
BAF laboratory test device
The schematic diagram of BAF
Microscopic examination results of the BFA
COD content of each node during domestication
COD removal rate during domestication
Effect of different ozone concentration and oxidation time on COD removal