Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 4
Article Contents

MA Yonghe, XU Rui, WANG Limin, LI Ke, YIN Zhe, SUN Zhixuan, YANG Yongbin, LI Qian. Research Progress on Phytoremediation of Heavy Metal Contaminated Soils[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 12-22. doi: 10.13779/j.cnki.issn1001-0076.2021.04.002
Citation: MA Yonghe, XU Rui, WANG Limin, LI Ke, YIN Zhe, SUN Zhixuan, YANG Yongbin, LI Qian. Research Progress on Phytoremediation of Heavy Metal Contaminated Soils[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 12-22. doi: 10.13779/j.cnki.issn1001-0076.2021.04.002

Research Progress on Phytoremediation of Heavy Metal Contaminated Soils

More Information
  • Soil heavy metal pollution has been a global environmental problem. Therefore, remediation of heavy metal contaminated soil is of great significance to reduce the risk of heavy metal poisoning, maintain environmental health and restore ecology. Compared with other soil heavy metal pollution remediation technologies, phytoremediation has attracted wide attention due to its advantages of environmental friendliness, low cost and simple operation. This paper summarizes the main role of phytoremediation technology, and the mechanism and research status of synergistic phytoremediation by microbiological, chemical and physical methods are discussed. In addition, the future research directions of phytoremediation and combined remediation of heavy metal contaminated soil are prospected in order to provide reference for the wide application of this green technology.

  • 加载中
  • [1] CHAOUA S, BOUSSAA S, GHARMALI A E, et al. Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco[J]. Journal of the Saudi Society of Agricultural Sciences, 2019, 18(4): 429-436. doi: 10.1016/j.jssas.2018.02.003

    CrossRef Google Scholar

    [2] 邵啸. 浅析土壤重金属污染的现状以及治理[J]. 资源节约与环保, 2020(10): 105-106. doi: 10.3969/j.issn.1673-2251.2020.10.061

    CrossRef Google Scholar

    [3] BU-OLAYAN A H, THOMAS B V. Translocation and bioaccumulation of trace metals in desert plants of Kuwait governorates[J]. Research Journal of Environmental ences, 2009, 3(5): 581-587.

    Google Scholar

    [4] CHAFFAI R, KOYAMA H J A I B R. Heavy metal tolerance in Arabidopsis thaliana[J]. Advances in Botanical Research, 2011, 60: 1-49.

    Google Scholar

    [5] MONNI S, SALEMAA M, MILLAR N. The tolerance of empetrum nigrum to copper and nickel[J]. Environmental Pollution, 2000, 109(2): 221-229. doi: 10.1016/S0269-7491(99)00264-X

    CrossRef Google Scholar

    [6] UL HASSAN Z, ALI S, RIZWAN M, et al. Role of zinc in alleviating heavy metal stress[C]//Essential plant nutrients. City: Springer, 2017: 351-366.

    Google Scholar

    [7] LOPEZ S, PIUTTI S, VALLANCE J, et al. Nickel drives bacterial community diversity in the rhizosphere of the hyperaccumulator Alyssum murale[J]. Soil Biology and Biochemistry, 2017, 114: 121-130. doi: 10.1016/j.soilbio.2017.07.010

    CrossRef Google Scholar

    [8] CHUANYU, CHANG, RUNSHENG, et al. Bioaccumulation and health risk assessment of heavy metals in the soil-rice system in a typical seleniferous area, central China[J]. Environmental Toxicology & Chemistry, 2019, 38(7): 1577-1584.

    Google Scholar

    [9] SHARMA A, NAGPAL A K. Soil amendments: a tool to reduce heavy metal uptake in crops for production of safe food[J]. Reviews in Environmental ence & Bio/technology, 2018, 17(1): 187-203.

    Google Scholar

    [10] KHAN S, CAO Q, ZHENG Y, et al. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China[J]. Environmental Pollution, 2008, 152(3): 686-692. doi: 10.1016/j.envpol.2007.06.056

    CrossRef Google Scholar

    [11] CUELLO S, RAMOS S, MADRID Y, et al. Differential protein expression of hepatic cells associated with MeHg exposure: deepening into the molecular mechanisms of toxicity[J]. Analytical and Bioanalytical Chemistry, 2012, 404(2): 315-324. doi: 10.1007/s00216-012-6042-3

    CrossRef Google Scholar

    [12] LIN Y C, HSU S C, CHOU C C K, et al. Wintertime haze deterioration in Beijing by industrial pollution deduced from trace metal fingerprints and enhanced health risk by heavy metals[J]. Environmental Pollution, 2016, 208: 284-293. doi: 10.1016/j.envpol.2015.07.044

    CrossRef Google Scholar

    [13] BLAYLOCK A J, SEYMOUR R S. Diaphragmatic nets prevent water invasion of gas canals in Nelumbo nucifera[J]. Aquatic Botany, 2000, 67(1): 53-59. doi: 10.1016/S0304-3770(99)00087-X

    CrossRef Google Scholar

    [14] TREVORS M H S T. Phytoremediation[J]. Water, Air, & Soil Pollution, 2010, 205(1): 61-63.

    Google Scholar

    [15] WON K J. Removing environmental organic pollutants with bioremediation and phytoremediation[J]. Biotechnology letters, 2014, 36(6): 1129-1139. doi: 10.1007/s10529-014-1466-9

    CrossRef Google Scholar

    [16] VARA PRASAD M N, MARIA D O F, HELENA. Metal hyperaccumulation in plants-Biodiversity prospecting for phytoremediation technology[J]. Electronic J Biotech, 2003, 6(3): 189-198.

    Google Scholar

    [17] ETIM E. Phytoremediation and its mechanisms: A review[J]. Int J Environ Bioenergy, 2012, 2: 120-136.

    Google Scholar

    [18] WANI S H, SANGHERA G S, ATHOKPAM H, et al. Phytoremediation: Curing soil problems with crops[J]. African Journal of Agricultural Research, 2012, 7: 3991-4002.

    Google Scholar

    [19] GHAVRI S V, SINGH R P. Growth, biomass production and remediation of copper contamination by Jatropha curcas plant in industrial wasteland soil[J]. Journal of Environmental Biology, 2012, 33(2): 207-214.

    Google Scholar

    [20] BROOKS R R, LEE J, REEVES R D, et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants[J]. 1977, 7: 49-57.

    Google Scholar

    [21] RASCIO N, NAVARI-IZZO F J P S. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting[J]. Plant science: an international journal of experimental plant biology, 2011, 180(2): 169-181.

    Google Scholar

    [22] BAKER A J, BROOKS R J B. Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry[J]. Biorecovery, 1989, 1(2): 81-126.

    Google Scholar

    [23] LAHORI, ALTAF, HUSSAIN, et al. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review[J]. Ecotoxicology and Environmental Safety, 2016, 126(4): 111-121.

    Google Scholar

    [24] KHALID S, SHAHID M, NIAZI N K, et al. A comparison of technologies for remediation of heavy metal contaminated soils[J]. Journal of Geochemical Exploration, 2016, 182: 247-268.

    Google Scholar

    [25] LAGO-VILA M, ARENAS-LAGO D, RODRIGUEZ-SEIJO A, et al. Ability of cytisus scoparius for phytoremediation of soils from a Pb/Zn mine: Assessment of metal bioavailability and bioaccumulation[J]. Journal of Environmental Management, 2019, 235: 152-160.

    Google Scholar

    [26] HAZRAT, ALI, AND, et al. Phytoremediation of heavy metals-concepts and applications[J]. Chemosphere, 2013, 91(7): 869-881. doi: 10.1016/j.chemosphere.2013.01.075

    CrossRef Google Scholar

    [27] SUBHASHINI V, SWAMY A J. Phytoremediation of Pb and Ni contaminated soils using catharanthus roseus (L. )[J]. Universal Journal of Environmental Research & Technology, 2013, 3(4).

    Google Scholar

    [28] LI H, LUO N, LI Y W, et al. Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures[J]. Environmental Pollution, 2017, 224(5): 622-630.

    Google Scholar

    [29] BAE J, BENOIT D L, WATSON A K. Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes[J]. Environmental Pollution, 2016, 213(6): 112-118.

    Google Scholar

    [30] A N S, B M I, C M R S, et al. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives[J]. Chemosphere, 2017, 171: 710-721. doi: 10.1016/j.chemosphere.2016.12.116

    CrossRef Google Scholar

    [31] WANG S T, DONG Q, WANG Z L. Differential effects of citric acid on cadmium uptake and accumulation between tall fescue and Kentucky bluegrass[J]. Ecotoxicol Environ Saf, 2017, 145(11): 200-206.

    Google Scholar

    [32] IVANO B, J? RG L, S G-G M, et al. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil[J]. Environmental Pollution, 2008, 152(3): 686-692. doi: 10.1016/j.envpol.2007.06.056

    CrossRef Google Scholar

    [33] HASHIMOTO Y, KANKE Y. Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations[J]. Environmental Pollution, 2018, 238(7): 617-623.

    Google Scholar

    [34] URAGUCHI S, FUJIWARA T. Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation[J]. Rice, 2012, 5(1): 1-8. doi: 10.1186/1939-8433-5-1

    CrossRef Google Scholar

    [35] GHOSH M, SINGH S P. A review on phytoremediation of heavy metals and utilization of its byproducts[J]. Applied Ecology & Environmental Research, 2005, 3(1): 1-18.

    Google Scholar

    [36] JADIA C D, FULEKAR M H. Phytoremediation: the application of vermicompost to remove zinc, cadmium, copper, nickel and lead by sunflower plant[J]. Environmental Engineering & Management Journal, 2008, 7(5): 547-558.

    Google Scholar

    [37] GóMEZ-SAGASTI M T, ALKORTA I, BECERRIL J M, et al. Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation[J]. Water, Air, & Soil Pollution, 2012, 223(6): 3249-3262.

    Google Scholar

    [38] ADREES M, ALI S, RIZWAN M, et al. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review[J]. Ecotoxicol Environ Saf, 2015, 119(9): 186-197.

    Google Scholar

    [39] BHARGAVA A, CARMONA F F, BHARGAVA M, et al. Approaches for enhanced phytoextraction of heavy metals[J]. Journal of Environmental Management, 2012, 105: 103-120.

    Google Scholar

    [40] SHEORAN V, SHEORAN A S, POONIA P. Factors affecting phytoextraction: A Review[J]. Pedosphere, 2016, 26(2): 148-166. doi: 10.1016/S1002-0160(15)60032-7

    CrossRef Google Scholar

    [41] ALI H, KHAN E, SAJAD M A. Phytoremediation of heavy metals-concepts and applications[J]. Chemosphere, 2013, 91(7): 869-881. doi: 10.1016/j.chemosphere.2013.01.075

    CrossRef Google Scholar

    [42] OVEKA M, TAKá T. Managing heavy metal toxicity stress in plants: biological and biotechnological tools[J]. Biotechnology Advances, 2014, 32(1): 73-86. doi: 10.1016/j.biotechadv.2013.11.011

    CrossRef Google Scholar

    [43] HE C, ZHAO Y, WANG F, et al. Phytoremediation of soil heavy metals (Cd and Zn) by castor seedlings: tolerance, accumulation and subcellular distribution[J]. Chemosphere, 2020, 252: 126471. doi: 10.1016/j.chemosphere.2020.126471

    CrossRef Google Scholar

    [44] ZHANG X, LI M, YANG H, et al. Physiological responses of suaeda glauca and Arabidopsis thaliana in phytoremediation of heavy metals[J]. Journal of Environmental Management, 2018, 223(10): 132-139.

    Google Scholar

    [45] HUANG C C, CHEN M W, HSIEH J L, et al. Expression of mercuric reductase from Bacillus megaterium MB1 in eukaryotic microalga Chlorella sp. DT: an approach for mercury phytoremediation[J]. Applied Microbiology and Biotechnology, 2006, 72(1): 197-205. doi: 10.1007/s00253-005-0250-0

    CrossRef Google Scholar

    [46] GRZEGóRSKA A, RYBARCZYK P, ROGALA A, et al. Phytoremediation-from environment cleaning to energy generation-current status and future perspectives[J]. Energies, 2020, 13(11): 1-43.

    Google Scholar

    [47] WANG J, FENG X, ANDERSONS C W N, et al. Remediation of mercury contaminated sites-A review[J]. Journal of Hazardous Materials, 2012, 221: 1-18.

    Google Scholar

    [48] LIPHADZI M S, KIRKHAM M B, MUSIL C F. Phytoremediation of soil contaminated with heavy metals: a technology for rehabilitation of the environment[J]. South African Journal of Botany, 2005, 71(1): 24-37. doi: 10.1016/S0254-6299(15)30145-9

    CrossRef Google Scholar

    [49] TERRY N, ZAYED A M, SOUZA M P D, et al. Selenium in higher plants[J]. Annual Review of Plant Physiology & Plant Molecular Biology, 2000, 51: 401-432.

    Google Scholar

    [50] BANUELOS G S, MEEK D W. Accumulation of selenium in plants grown on selenium-treated soil[J]. Jenvironqual, 1990, 19(4): 772-777.

    Google Scholar

    [51] PARMAR S, SINGH V. Phytoremediation approaches for heavy metal pollution: a review[J]. Journal of Plant Science and Ressearch, 2015, 2: 139.

    Google Scholar

    [52] HATTAB N, MOTELICAHEINO M, BOURRAT X, et al. Mobility and phytoavailability of Cu, Cr, Zn, and As in a contaminated soil at a wood preservation site after 4 years of aided phytostabilization[J]. Environ Pollut Res Int, 2014, 21(17): 10307-10319. doi: 10.1007/s11356-014-2938-0

    CrossRef Google Scholar

    [53] GUO P, WANG T, LIU Y, et al. Phytostabilization potential of evening primrose (oenothera glazioviana) for copper-contaminated sites[J]. Environmental ence & Pollution Research International, 2014, 21(1): 631-640.

    Google Scholar

    [54] FARAHAT E A, GALAL T M. Trace metal accumulation by ranunculus sceleratus: implications for phytostabilization[J]. Environmental ence & Pollution Research International, 2018, 25(1-4): 4214-4222.

    Google Scholar

    [55] BONANNO G. Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax[J]. Ecotoxicology and Environmental Safety, 2013, 97: 124-130. doi: 10.1016/j.ecoenv.2013.07.017

    CrossRef Google Scholar

    [56] OIHANA, BARRUTIA, MARIA, et al. Field assessment of the effectiveness of organic amendments for aided phytostabilization of a Pb-Zn contaminated mine soil[J]. Journal of Geochemical Exploration: Journal of the Association of Exploration Geochemists, 2014, 145: 181-189. doi: 10.1016/j.gexplo.2014.06.006

    CrossRef Google Scholar

    [57] PADMAVATHIAMMA P K, LI L Y. Phytoremediation technology: hyper-accumulation metals in plants[J]. Water Air & Soil Pollution, 2007, 184(1-4): 105-126.

    Google Scholar

    [58] SYLVAIN B, MIKAEL M H, FLORIE M, et al. Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine technosols[J]. Catena, 2016, 136: 44-52. doi: 10.1016/j.catena.2015.07.008

    CrossRef Google Scholar

    [59] LEE S H, JI W H, LEE W S, et al. Influence of amendments and aided phytostabilization on metal availability and mobility in Pb/Zn mine tailings[J]. Journal of Environmental Management, 2014, 139(6): 15-21.

    Google Scholar

    [60] RADZIEMSKA M, GUSIATIN Z M, BILGIN A. Potential of using immobilizing agents in aided phytostabilization on simulated contamination of soil with lead[J]. Ecological Engineering, 2017, 102: 490-500. doi: 10.1016/j.ecoleng.2017.02.028

    CrossRef Google Scholar

    [61] PéREZ-ESTEBAN J, ESCOLáSTICO C, MOLINER A, et al. Phytostabilization of metals in mine soils using Brassica juncea in combination with organic amendments[J]. Plant and Soil, 2014, 377(1-2): 97-109. doi: 10.1007/s11104-013-1629-9

    CrossRef Google Scholar

    [62] PAVEL, PB, PUSCHENREITER, et al. Aided phytostabilization using Miscanthus sinensis x giganteus on heavy metal-contaminated soils[J]. SCI TOTAL ENVIRON, 2014, 479-480: 125-131. doi: 10.1016/j.scitotenv.2014.01.097

    CrossRef Google Scholar

    [63] TANGAHU B V, ABDULLAH S R S, BASRI H, et al. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation[J]. International Journal of Chemical Engineering, 2011, 2011: 1-31.

    Google Scholar

    [64] GAIKWAD R, GAVANDE S. Study on removal of pollutants from wastewater by phytoremediation[J]. International Journal of Environment Research, 2020, 2(2): 11-14.

    Google Scholar

    [65] CAADOR I, DUARTE B. Chromium phyto-transformation in salt marshes: The role of halophytes[M]. City: Springer International Publishing, 2015.

    Google Scholar

    [66] 段桂兰, 崔慧灵, 杨雨萍, 扆幸运, 朱冬, 朱永官. 重金属污染土壤中生物间相互作用及其协同修复应用[J]. 生物工程学报, 2020, 36(3): 455-470.

    Google Scholar

    [67] MA Y, PRASAD M N V, RAJKUMAR M, et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils[J]. Biotechnology Advances, 2011, 29(2): 248-258. doi: 10.1016/j.biotechadv.2010.12.001

    CrossRef Google Scholar

    [68] PIRES C, FRANCO A R, PEREIRA S I A, et al. Metal(loid)-contaminated soils as a source of culturable heterotrophic aerobic bacteria for remediation applications[J]. Geomicrobiology Journal, 2017, 34(9): 760-768. doi: 10.1080/01490451.2016.1261968

    CrossRef Google Scholar

    [69] SOARES M A, MELLO I S, TARGANSKI S K, et al. Endophytic bacteria stimulate mercury phytoremediation by modulating its bioaccumulation and volatilization[J]. Ecotoxicology and Environmental Safety, 2020, 202: 110818. doi: 10.1016/j.ecoenv.2020.110818

    CrossRef Google Scholar

    [70] ABOU-SHANAB R A I, MATHAI P P, SANTELLI C, et al. Indigenous soil bacteria and the hyperaccumulator Pteris vittata mediate phytoremediation of soil contaminated with arsenic species[J]. Ecotoxicology and Environmental Safety, 2020, 195: 110458. doi: 10.1016/j.ecoenv.2020.110458

    CrossRef Google Scholar

    [71] NARENDRULA-KOTHA R, NKONGOLO K K. Microbial response to soil Liming of damaged ecosystems revealed by pyrosequencing and phospholipid fatty acid analyses[J]. Plos One, 2017, 12(1): e0168497. doi: 10.1371/journal.pone.0168497

    CrossRef Google Scholar

    [72] A O A, B H K K, B I Z. Arbuscular mycorrhiza and aspergillus terreus inoculation along with compost amendment enhance the phytoremediation of Cr-rich technosol by solanum lycopersicum under field conditions[J]. Ecotoxicology and Environmental Safety, 2020, 201: 110869. doi: 10.1016/j.ecoenv.2020.110869

    CrossRef Google Scholar

    [73] MANOJ S R, KARTHIK C, KADIRVELU K, et al. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review[J]. Journal of Environmental Management, 2020, 254: 109779. doi: 10.1016/j.jenvman.2019.109779

    CrossRef Google Scholar

    [74] SINGH J S, SENEVIRATNE G. Role of rhizospheric microbes in heavy metal uptake by plants[M]. City: Springer International Publishing, 2017.

    Google Scholar

    [75] CHEN Y, YANG W, CHAO Y, et al. Metal-tolerant enterobacter sp. strain EG16 enhanced phytoremediation using Hibiscus cannabinus via siderophore-mediated plant growth promotion under metal contamination[J]. Plant and Soil, 2017, 413(1-2): 203-216. doi: 10.1007/s11104-016-3091-y

    CrossRef Google Scholar

    [76] CHENG, ZHOU, LIN, et al. Bacillus amyloliquefaciens SAY09 Increases cadmium resistance in plants by activation of auxin-mediated signaling pathways[J]. Genes, 2017, 8(7): 173. doi: 10.3390/genes8070173

    CrossRef Google Scholar

    [77] BAO C, SHA L, YINGJIE W, et al. The effects of the endophytic bacterium pseudomonas fluorescens sasm05 and IAA on the plant growth and cadmium uptake of sedum alfredii hance[J]. Frontiers in Microbiology, 2017, 8: 2538. doi: 10.3389/fmicb.2017.02538

    CrossRef Google Scholar

    [78] RAJKUMAR, SANDHYA, PRASAD, et al. Perspectives of plant-associated microbes in heavy metal phytoremediation[J]. Biotechnol Advances, 2012, 30(6): 1562-1574. doi: 10.1016/j.biotechadv.2012.04.011

    CrossRef Google Scholar

    [79] WU Y, MA L, LIU Q, et al. The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant Sedum alfredii[J]. Journal of Hazardous Materials, 2020, 395: 122661. doi: 10.1016/j.jhazmat.2020.122661

    CrossRef Google Scholar

    [80] HE X, XU M, WEI Q, et al. Promotion of growth and phytoextraction of cadmium and lead in solanum nigrum L. mediated by plant-growth-promoting rhizobacteria[J]. Ecotoxicology and Environmental Safety, 2020, 205: 111333. doi: 10.1016/j.ecoenv.2020.111333

    CrossRef Google Scholar

    [81] ORTUZAR M, TRUJILLO M E, ROMáN-PONCE B, et al. Micromonospora metallophores: A plant growth promotion trait useful for bacterial-assisted phytoremediation[J]. Science of The Total Environment, 2020, 739: 139850. doi: 10.1016/j.scitotenv.2020.139850

    CrossRef Google Scholar

    [82] RAMíREZ V, BAEZ A, LóPEZ P, et al. Chromium hyper-tolerant bacillus sp. MH778713 assists phytoremediation of heavy metals by mesquite trees (prosopis laevigata)[J]. Frontiers in Microbiology, 2019, 10: 1833. doi: 10.3389/fmicb.2019.01833

    CrossRef Google Scholar

    [83] LIU S, YANG B, LIANG Y, et al. Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils[J]. Environmental Science and Pollution Research, 2020, 27(10): 1-17. doi: 10.1007/s11356-020-08282-6

    CrossRef Google Scholar

    [84] LI F, YANG F, CHEN Y, et al. Chemical reagent-assisted phytoextraction of heavy metals by Bryophyllum laetivirens from garden soil made of sludge-ScienceDirect[J]. Chemosphere, 2020, 253: 126574. doi: 10.1016/j.chemosphere.2020.126574

    CrossRef Google Scholar

    [85] QURESHI F F, ASHRAF M A, RASHEED R, et al. Organic chelates decrease phytotoxic effects and enhance chromium uptake by regulating chromium-speciation in castor bean (Ricinus communis L. )[J]. The Science of the Total Environment, 2020, 716(5): 137061.

    Google Scholar

    [86] TIPU M I, ASHRAF M Y, SARWAR N, et al. Growth and physiology of maize (Zea mays L. ) in a nickel-contaminated soil and phytoremediation efficiency using EDTA[J]. Journal of Plant Growth Regulation, 2021, 40: 774-786. doi: 10.1007/s00344-020-10132-1

    CrossRef Google Scholar

    [87] SUN Y, ZHOU Q, XU Y, et al. The role of EDTA on Cadmium phytoextraction in a cadmium-hyperaccumulator Rorippa globosa[J]. Journal of Environmental Chemistry and Ecotoxicology, 2011, 3(3): 45-51.

    Google Scholar

    [88] YU H, ZHAN J, ZHANG Q, et al. NTA-enhanced Pb remediation efficiency by the phytostabilizer Athyrium wardii (Hook. ) and associated Pb leaching risk[J]. Chemosphere, 2020, 246: 125815. doi: 10.1016/j.chemosphere.2020.125815

    CrossRef Google Scholar

    [89] A N S, B M I, C M R S, et al. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives[J]. Chemosphere, 2017, 171: 710-721. doi: 10.1016/j.chemosphere.2016.12.116

    CrossRef Google Scholar

    [90] GUO D, ALI A, REN C, et al. EDTA and organic acids assisted phytoextraction of Cd and Zn from a smelter contaminated soil by potherb mustard (Brassica juncea, Coss) and evaluation of its bioindicators[J]. Ecotoxicology and Environmental Safety, 2019, 167: 396-403. doi: 10.1016/j.ecoenv.2018.10.038

    CrossRef Google Scholar

    [91] HUANG G, GUO G, YAO S, et al. Organic acids, amino acids compositions in the root exudates and Cu-accumulation in castor (ricinus communis L. ) under Cu stress[J]. International Journal of Phytoremediation, 2016, 18(1): 33-40. doi: 10.1080/15226514.2015.1058333

    CrossRef Google Scholar

    [92] PARVEEN A, SALEEM M H, KAMRAN M, et al. Effect of citric acid on growth, ecophysiology, chloroplast ultrastructure, and phytoremediation potential of jute (corchorus capsularis L. ) seedlings exposed to copper stress[J]. Biomolecules, 2020, 10(4): 592. doi: 10.3390/biom10040592

    CrossRef Google Scholar

    [93] REN C, GUO D, LIU X, et al. Performance of the emerging biochar on the stabilization of potentially toxic metals in smelter- and mining-contaminated soils[J]. Environmental Science and Pollution Research, 2020, 24(1): 1-11. doi: 10.1007/s11356-020-07805-5?utm_content=null

    CrossRef Google Scholar

    [94] MEI H, ZHONGWU L, NINGLIN L, et al. Application potential of biochar in environment: Insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals[J]. Science of The Total Environment, 2019, 646: 220-228. doi: 10.1016/j.scitotenv.2018.07.282

    CrossRef Google Scholar

    [95] D L J A B C, A H W, A M A, et al. Effect of lychee biochar on the remediation of heavy metal-contaminated soil using sunflower: A field experiment-ScienceDirect[J]. Environmental Research, 2020, 188: 109886. doi: 10.1016/j.envres.2020.109886

    CrossRef Google Scholar

    [96] MAQBOOL A, ALI S, RIZWAN M, et al. N-Fertilizer (Urea) enhances the phytoextraction of cadmium through solanum nigrum L[J]. International Journal of Environmental Research and Public Health, 2020, 17(11): 3850. doi: 10.3390/ijerph17113850

    CrossRef Google Scholar

    [97] CHEN L, LONG C, WANG D, et al. Phytoremediation of cadmium (Cd) and uranium (U) contaminated soils by brassica juncea L. enhanced with exogenous application of plant growth regulators[J]. Chemosphere, 2020, 242: 125112. doi: 10.1016/j.chemosphere.2019.125112

    CrossRef Google Scholar

    [98] CAMESELLE C, CHIRAKKARA R A, REDDY K R. Electrokinetic-enhanced phytoremediation of soils: Status and opportunities[J]. Chemosphere, 2013, 93(4): 626-636. doi: 10.1016/j.chemosphere.2013.06.029

    CrossRef Google Scholar

    [99] ACOSTA-SANTOYO G, CAMESELLE C, BUSTOS E. Electrokinetic-Enhanced ryegrass cultures in soils polluted with organic and inorganic compounds[J]. Environmental Research, 2017, 158: 118-125. doi: 10.1016/j.envres.2017.06.004

    CrossRef Google Scholar

    [100] LIM J M, SALIDO A L, BUTCHER D J. Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics[J]. Microchemical Journal, 2004, 76(1/2): 3-9.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(4364) PDF downloads(425) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint