Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 4
Article Contents

XU Chunli, LIU Siwen, WEI Jixin, HUANG Yuanying, MA Jiabao, ZENG Pusheng, LI Xuguang. Geochemical Characteristics of Rare Earth and Heavy Metal Elements in Ion-type Rare Earth Mining Area and Surrounding Soil[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 1-11. doi: 10.13779/j.cnki.issn1001-0076.2021.04.001
Citation: XU Chunli, LIU Siwen, WEI Jixin, HUANG Yuanying, MA Jiabao, ZENG Pusheng, LI Xuguang. Geochemical Characteristics of Rare Earth and Heavy Metal Elements in Ion-type Rare Earth Mining Area and Surrounding Soil[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 1-11. doi: 10.13779/j.cnki.issn1001-0076.2021.04.001

Geochemical Characteristics of Rare Earth and Heavy Metal Elements in Ion-type Rare Earth Mining Area and Surrounding Soil

More Information
  • In the late 1960s, China's ion-type rare earth ore was first discovered and mined in Ganzhou, Jiangxi Province. In the long-term mining process, it has a continuous impact on the ecological environment of the mining area and the surrounding water and soil. In this paper, the soil geochemical survey and risk assessment of the ion-type rare earth ore in Southern Jiangxi Province and its surrounding areas were carried out.The results showed that the content of heavy rare earth in soil was significantly higher than that of light rare earth, and the content of Y was 7.2 times of the national background value (22.90 μg/g), accounting for the highest proportion.The Igeo mean of geo-accumulation index evaluation showed that 77.44% of HREE and 99.55% of Sm were non-pollution to medium pollution, and 95.92% of LREE was non-pollution.Except for Pb at mild to moderate pollution levels, As, Cd, Cr, Cu, Hg, Zn and Ni were all non-polluting. Compared with the pollution risk screening value of agricultural land, the exceeding rate of heavy metals in the samples was 7.35%, and the ecological risk of heavy metals in the soil was low.The statistical results show that there is a good correlation between rare earth content and heavy metal pollution. The geological background of granite weathering crust dominates the control of rare earth and heavy metal Pb, which means that the higher the content of heavy rare earth is, the greater the Pb pollution may be. Therefore, it is necessary to pay attention to the geochemical characteristics and distribution of Pb elements in mine soil remediation, and adopt reasonable remediation technologies and means.

  • 加载中
  • [1] 赖丹, 吴一丁. 南方离子型稀土产业发展现状、问题及出路——以赣州为例[J]. 稀土, 2019, 243(4): 143-151.

    Google Scholar

    [2] 邓国庆, 杨幼明. 离子型稀土矿开采提取工艺发展述评[J]. 稀土, 2016, 37(3): 129-133.

    Google Scholar

    [3] 宋祥兰, 王兰英, 邝先松, 等. 赣南废弃稀土矿区植被恢复模式试验[J]. 中南林业科技大学学报, 2015, 35(6): 58-62.

    Google Scholar

    [4] YANY X J, LIN A, LI X L, et al. China's ion-adsorption rare earth resources, mining consequences and preservation[J]. Environmental Development, 2013, 8: 131-136. doi: 10.1016/j.envdev.2013.03.006

    CrossRef Google Scholar

    [5] 刘斯文, 黄园英, 朱晓华, 等. 离子型稀土采矿对矿山及周边水土环境的影响[J]. 环境科学与技术, 2015, 38(6): 25-32.

    Google Scholar

    [6] HUA S Y, TAO M L, QING S L, et al. Compound leaching behavior and regularity of ionic rare earth ore[J]. Powder Technology, 2018, 333: 106-114. doi: 10.1016/j.powtec.2018.04.010

    CrossRef Google Scholar

    [7] 周夏飞, 朱文泉, 马国霞, 等. 江西省赣州市稀土矿开采导致的水土保持价值损失评估[J]. 自然资源学报, 2016, 31(6): 982-993.

    Google Scholar

    [8] 陈卫平, 杨阳, 谢天, 等. 中国农田土壤重金属污染防治挑战与对策[J]. 土壤学报, 2018, 55(2): 261-272.

    Google Scholar

    [9] 高志强, 周启星. 稀土矿露天开采过程的污染及对资源和生态环境的影响[J]. 生态学杂志, 2011, 30(12): 2915-2922.

    Google Scholar

    [10] 王秀丽, 张哲源, 李恒凯. 离子型稀土矿开采的环境影响及治理措施[J]. 国土与自然资源研究, 2020(2): 20-22. doi: 10.3969/j.issn.1003-7853.2020.02.006

    CrossRef Google Scholar

    [11] 金姝兰, 黄益宗. 稀土元素对农田生态系统的影响研究进展[J]. 生态学报, 2013, 33(16): 4836-4845.

    Google Scholar

    [12] VERA H, MONTSERRAT G, ELENA M T, et al. Measurement of cerium in human breast milk and blood samples[J]. Journal of Trace elements in Medicine and Biology, 2010, 24(3): 193-199. doi: 10.1016/j.jtemb.2010.03.001

    CrossRef Google Scholar

    [13] RIM K T, KOO K H, PARK J S. Toxicological evaluations of rare earths and their health impacts to workers: a literature review[J]. Safety and Health at Work, 2013, 4(1): 12-26. doi: 10.5491/SHAW.2013.4.1.12

    CrossRef Google Scholar

    [14] 刘莉, 戴纪强, 志强, 等. 稀土对人体健康损害研究进展[J]. 中国职业医学, 2019, 46(5): 625-627+632.

    Google Scholar

    [15] LIANG T, LI K X, WANG L Q. State of rare earth elements in different environmental components in mining areas of China[J]. Environmental Monitoring and Assessment, 2014, 186(3): 1499-1513. doi: 10.1007/s10661-013-3469-8

    CrossRef Google Scholar

    [16] ISMAIL B, REDZUWAN Y, CHUA R S, et al. Radiological impacts of the amang processing industry on neighbouring residents[J]. Applied Radiation and Isotopes, 2001, 54(3): 393-397. doi: 10.1016/S0969-8043(00)00106-8

    CrossRef Google Scholar

    [17] GWENZI W, MAUGORI L, DANHA C, et al. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants[J]. Science of the Total Environment, 2018, 636: 299-313. doi: 10.1016/j.scitotenv.2018.04.235

    CrossRef Google Scholar

    [18] 郭钟群, 赵奎, 金解放, 等. 离子型稀土矿环境风险评估及污染治理研究进展[J]. 稀土, 2019, 40(3): 115-126.

    Google Scholar

    [19] 李小飞, 陈志彪, 陈志强, 等. 南方稀土采矿地土壤和蔬菜重金属含量及其健康风险评价[J]. 水土保持学报, 2013, 27(1): 146-151.

    Google Scholar

    [20] 闫振丽. 离子型稀土矿开采过程中铅活化过程的研究[D]. 北京: 中国地质大学(北京), 2015.

    Google Scholar

    [21] 张塞, 于扬, 王登红, 等. 赣南离子吸附型稀土矿区土壤重金属形态分布特征及生态风险评价[J]. 岩矿测试, 2020, 39(5): 726-738.

    Google Scholar

    [22] 师艳丽, 张萌, 姚娜, 等. 江西定南县离子型稀土尾矿周边水体氮污染状况与分布特征[J]. 环境科学研究, 2020, 33(1): 94-103.

    Google Scholar

    [23] 温晓倩, 梁成华, 姜彬慧, 等. 我国土壤环境质量标准存在问题及修订建议[J]. 广东农业科学, 2010, 37(3): 89-94. doi: 10.3969/j.issn.1004-874X.2010.03.029

    CrossRef Google Scholar

    [24] 周彩云, 张嵚, 赵小敏, 等. 赣南某原地浸析稀土尾矿复垦前后土壤质量变化[J]. 农业资源与环境学报, 2019, 36(1): 89-95.

    Google Scholar

    [25] HAZZEMAN, HARIS, JUEN L, et al. Geo-accumulation index and contamination factors of heavy metals (Zn and Pb) in urban river sediment. [J]. Environmental geochemistry and health, 2017, 39: 1259-1271. doi: 10.1007/s10653-017-9971-0

    CrossRef Google Scholar

    [26] 滕彦国, 庹先国, 倪师军, 等. 应用地质累积指数评价沉积物中重金属污染: 选择地球化学背景的影响[J]. 环境科学与技术, 2002(2): 7-9+48. doi: 10.3969/j.issn.1003-6504.2002.02.003

    CrossRef Google Scholar

    [27] LIU S W, LIU X D, TAN K Y, et al. Characteristics of soil pollution caused by mining in ion-absorbed rare earth mines and crucial issues of the polluted soil restoration: a case study of longnan rare earth mines[J]. South China, 2014, 3248: 2564-2569.

    Google Scholar

    [28] 陈文轩, 李茜, 王珍, 等. 中国农田土壤重金属空间分布特征及污染评价[J]. 环境科学, 2020, 41(6): 2822-2833.

    Google Scholar

    [29] 杨忠芳, 余涛, 冯海艳, 等. 区域生态地球化学评价数据的统计方法[J]. 地质通报, 2007(11): 1405-1412. doi: 10.3969/j.issn.1671-2552.2007.11.002

    CrossRef Google Scholar

    [30] MULLER G. Index of geoaccumulation in sediments of the rhine river[J]. GeoJournal, 1969, 2(3): 109-118.

    Google Scholar

    [31] 陈翠华, 倪师军, 何彬彬, 等. 江西德兴矿集区水系沉积物重金属污染的时空对比[J]. 地球学报, 2008(5): 639-646. doi: 10.3321/j.issn:1006-3021.2008.05.015

    CrossRef Google Scholar

    [32] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.

    Google Scholar

    [33] 池汝安, 田君. 风化壳淋积型稀土矿评述[J]. 中国稀土学报, 2007(6): 641-650. doi: 10.3321/j.issn:1000-4343.2007.06.001

    CrossRef Google Scholar

    [34] 陶继华, 李武显, 李献华, 等. 赣南龙源坝地区燕山期高分异花岗岩年代学、地球化学及锆石Hf-O同位素研究[J]. 中国科学: 地球科学, 2013, 43(5): 770-788.

    Google Scholar

    [35] JIANG S Y, HUIMIN S, XIONG Y, et al. Spatial-temporal distribution, geological characteristics and ore-formation controlling factors of major types of rare metal mineral deposits in China[J]. Acta Geologica Sinica(English Edition), 2020, 94(6): 1757-1773.

    Google Scholar

    [36] KUMAR M, GOSWAMI R, AWASTHI N, et al. Provenance and fate of trace and rare earth elements in the sediment-aquifers systems of Majuli River Island, India[J]. Chemosphere, 2019, 237: 124477-. doi: 10.1016/j.chemosphere.2019.124477

    CrossRef Google Scholar

    [37] 王慧, 简绍勇, 李娟, 等. 三种统计分析方法在数学建模中的应用浅谈[J]. 科学咨询(教育科研), 2020(10): 95-96.

    Google Scholar

    [38] 刘硕, 吴泉源, 曹学江, 等. 龙口煤矿区土壤重金属污染评价与空间分布特征[J]. 环境科学, 2016, 37(1): 270-279.

    Google Scholar

    [39] 王幼奇, 白一茹, 王建宇. 引黄灌区不同尺度农田土壤重金属空间分布及污染评价: 以银川市兴庆区为例[J]. 环境科学, 2014, 35(7): 2714-2720.

    Google Scholar

    [40] 中国科学院贵阳地球化学研究所. 华南花岗岩类的地球化学[M]. 北京: 科学出版社, 1979.

    Google Scholar

    [41] 史长义, 迟清华, 冯斌, 等. 中国花岗岩类地球化学图的多元素区域分布模式研究[J]. 地质论评, 2015, 61(2): 417-424.

    Google Scholar

    [42] 何纪力, 徐光炎, 朱惠民, 等. 江西省土壤环境背景值研究[M]. 北京: 中国环境科学出版社, 2006.

    Google Scholar

    [43] 史长义, 鄢明才, 迟清华. 中国不同构造单元花岗岩类元素丰度及特征[J]. 地质学报, 2007(01): 47-59.

    Google Scholar

    [44] 杨主明. 江西龙南花岗岩稀土风化壳中黏土矿物的研究[J]. 地质科学, 1987(1): 70-80+103.

    Google Scholar

    [45] 房增强. 铅锌矿区土壤重金属污染特征及稳定化研究[D]. 北京: 中国矿业大学, 2016.

    Google Scholar

    [46] 王昌宇. 湖南典型地区土壤中铅等元素污染来源探讨[D]. 北京: 中国地质大学, 2016.

    Google Scholar

    [47] 李广云, 曹永富, 赵书民, 等. 土壤重金属危害及修复措施[J]. 山东林业科技, 2011, 41(6): 96-101. doi: 10.3969/j.issn.1002-2724.2011.06.031

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(6)

Article Metrics

Article views(4742) PDF downloads(333) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint