Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 2
Article Contents

XIONG Wei, ZHANG Xingrong, LU Liang, ZHENG Yongxing, WANG Yifan, ZHU Yangge. The Application of Organic Macromolecular Depressants in the Beneficiation of Polymetallic Sulfide Ores[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 65-73. doi: 10.13779/j.cnki.issn1001-0076.2021.02.010
Citation: XIONG Wei, ZHANG Xingrong, LU Liang, ZHENG Yongxing, WANG Yifan, ZHU Yangge. The Application of Organic Macromolecular Depressants in the Beneficiation of Polymetallic Sulfide Ores[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 65-73. doi: 10.13779/j.cnki.issn1001-0076.2021.02.010

The Application of Organic Macromolecular Depressants in the Beneficiation of Polymetallic Sulfide Ores

More Information
  • In this paper, the application development of organic macromolecular depressants in the beneficiation of polymetallic sulfide ores was summarized from the natural polymers and synthetic polymers. The depressant mechanisms and its adsorption patterns on sulfide ores were introduced. Practical application cases were used to elaborate the application development of natural and synthetic macromolecule depressants. The future development trend of organic macromolecular depressants was also predicted by the overview of the current application status of macromolecular depressants.

  • 加载中
  • [1] 潘祖仁. 高分子化学(第三版)[M]. 北京: 化学工业出版社, 2003.

    Google Scholar

    [2] 郑学晶, 霍书浩. 天然高分子材料[M]. 北京: 化学工业出版社, 2010.

    Google Scholar

    [3] 李桦, 彭勇军, 刘奇, 等. 多糖在硫化矿物浮选中的应用及其作用机理[J]. 武汉化工学院学报, 1998, 2(12): 39-43.

    Google Scholar

    [4] DONG AQ, XIE J, WANG WM, et al. A novel method for amino starch preparation and its adsorption for Cu(Ⅱ) and Cr(Ⅵ)[J]. Journal of Hazardous Materials, 2010, 181(1): 448-454.

    Google Scholar

    [5] 邹永强. 淀粉改性高效絮凝剂的合成与应用研究[D]. 西安: 西北大学, 2016.

    Google Scholar

    [6] 肖志刚, 邵晨, 杨柳, 等. 淀粉改性方法的研究现状及进展[J]. 农产品加工, 2020(3): 81-84+88.

    Google Scholar

    [7] 赵凯强, 杨超, 王晨. 阳离子改性淀粉絮凝剂的研究进展[J]. 当代化工, 2019, 48(9): 2162-2166. doi: 10.3969/j.issn.1671-0460.2019.09.071

    CrossRef Google Scholar

    [8] 赵盼星, 刘文刚, 周晓彤, 等. 淀粉类产品在矿物加工中的应用研究现状[J]. 矿产保护与利用, 2020, 40(4): 152-156.

    Google Scholar

    [9] HAN G, WEN SM, WANG H, et al. Effect of starch on surface properties of pyrite and chalcopyrite and its response to flotation separation at low alkalinity[J]. Minerals Engineering, 2019, 143: 106015. doi: 10.1016/j.mineng.2019.106015

    CrossRef Google Scholar

    [10] RATH S. SWAGAT, SAHOO HURSHIKESH. A review on the application of starch as depressant in iron ore flotation[J]. Mineral Processing and Extractive Metallurgy Review, 2020(4): 1-14.

    Google Scholar

    [11] ZHOU Y, ALBIJANIC BORIS, TADESSE BOGALE, et al. Flotation behavior of pyrite in sub-bituminous and meta-bituminous coals with starch depressant in a microflotation cell[J]. Fuel Processing Technology, 2019, 187: 1-15. doi: 10.1016/j.fuproc.2019.01.004

    CrossRef Google Scholar

    [12] 路亮, 曾红, 张行荣, 等. 天然瓜尔胶化合物在矿物加工中的应用进展[J]. 矿业研究与开发, 2019, 39(10): 90-94.

    Google Scholar

    [13] BICAK O, EKMEKCI Z, BRADSHAW DJ, et al. Adsorption of guar gum and CMC on pyrite[J]. Minerals Engineering, 2007(20): 996-1002.

    Google Scholar

    [14] LASKOWSKI J. S, LIU Q, O'CONNOR C.T. Current understanding of the mechanism of polysaccharide adsorption at the mineral/aqueous solution interface[J]. International Journal of Mineral Processing, 2007, 84: 59-68. doi: 10.1016/j.minpro.2007.03.006

    CrossRef Google Scholar

    [15] 邱仙辉, 孙传尧. 古尔胶和鞣酸添加方式对硫化矿浮选的影响[J]. 北京科技大学学报, 2014, 36(3): 283-288.

    Google Scholar

    [16] TAN XIN, ZHU YANGGE, SUN CHUANYAO, et al. Adding cationic guar gum after collector: A novel investigation in flotation separation of galena from sphalerite[J]. Mineral Engineering, 2020, 157: 106542. doi: 10.1016/j.mineng.2020.106542

    CrossRef Google Scholar

    [17] 郭蔚, 彭金秀, 冯博, 等. 刺槐豆胶在铜硫分离中的抑制作用及机理分析[J]. 矿产保护与利用, 2018(1): 76-80.

    Google Scholar

    [18] 陈渊淦, 杨思琦, 汪惠惠, 等. 胶类抑制剂对滑石的抑制行为及机理[J]. 非金属矿, 2020, 43(4): 1-3.

    Google Scholar

    [19] 冯博, 郭宇涛, 王涛, 等. 氧化剂在刺槐豆胶浮选分离方铅矿和闪锌矿中的作用及机理[J]. 中南大学学报(自然科学版), 2020, 51(1): 1-7.

    Google Scholar

    [20] A LóPEZ VALDIVIESO, T CELEDóN CERVANTESA, S SONG, et al. Dextrin as a non-toxic depressant for pyrite in flotation with xanthates as collector[J]. Minerals Engineering, 2004, 17: 1001-1006. doi: 10.1016/j.mineng.2004.04.003

    CrossRef Google Scholar

    [21] JAN DRZYMALA, JANUSZ KAPUSNIAK, PIOTR TOMASIK. Removal of lead minerals from copper industrial flotation concentrates by xanthate flotation in the presence of dextrin[J]. International Journal of Mineral Processing, 2003, 65(1): 147-155.

    Google Scholar

    [22] BRAGA P.F. A, CHAVES A.P., LUZ A. B, et al. The use of dextrin in purification by flotation of molybdenite concentrates[J]. International Journal of Mineral Processing, 2014, 127: 23-27. doi: 10.1016/j.minpro.2013.12.007

    CrossRef Google Scholar

    [23] 周济. 低温等离子体强化低阶煤反浮选脱硫技术研究[D]. 北京: 中国矿业大学, 2018.

    Google Scholar

    [24] 李国栋. 抑铅浮锌分离铅锌混合精矿的工艺及机理研究[D]. 昆明: 昆明理工大学, 2014.

    Google Scholar

    [25] LIU DEZHI, ZHANG GUOFAN, CHEN YANFEI, et al. Investigations on the utilization of konjac glucomannan in the flotation separation of chalcopyrite from pyrite[J]. Minerals Engineering, 2020, 145: 106098. doi: 10.1016/j.mineng.2019.106098

    CrossRef Google Scholar

    [26] CHEN XIONG, GU GUOHUA, CHEN ZHIXIANG. Seaweed glue as a novel polymer depressant for the selective separation of chalcopyrite and galena[J]. International Journal of Minerals Metallurgy and Materials, 2019, 26(12): 1495-1503. doi: 10.1007/s12613-019-1848-z

    CrossRef Google Scholar

    [27] 邱仙辉, 孙传尧, 邱廷省. 鞣酸对方铅矿及黄铁矿的抑制作用[J]. 东北大学学报(自然科学版), 2015, 36(1): 124-128. doi: 10.3969/j.issn.1005-3026.2015.01.027

    CrossRef Google Scholar

    [28] 邱仙辉, 于洋, 张春菊. 有机抑制剂鞣酸对黄铜矿和方铅矿浮选的影响[J]. 有色金属工程, 2016, 6(6): 62-66. doi: 10.3969/j.issn.2095-1744.2016.06.014

    CrossRef Google Scholar

    [29] SRDJAN M. BULATOVIC. Handbook of Flotation Reagents: Chemistry, Theory and Practice[M]. SBM Mineral Processing and Engineering Services LTD, 2015.

    Google Scholar

    [30] LIU RUNQING, SUN WEI, HU YUEHUA, et al. Effect of organic depressant lignosulfonate calcium on separation of chalcopyrite from pyrite[J]. Journal of Central South University of Technology, 2009, 16: 753-757. doi: 10.1007/s11771-009-0125-0

    CrossRef Google Scholar

    [31] SARQUIS P. E, MENENDEZ-AGUADO J. M, MAHAMUD M. M, et al. Tannins: the organic depressants alternative in selective flotation of sulfides[J]. Journal of Cleaner Production, 2014, 84: 723-726. doi: 10.1016/j.jclepro.2014.08.025

    CrossRef Google Scholar

    [32] 龙良俊. 污泥腐殖酸特性及其改性后对重金属的吸附研究[D]. 重庆: 重庆大学, 2018.

    Google Scholar

    [33] STEVENSON F J. Humus chemistry: genesis, composition, reactions[J]. Soil Science, 1982, 135(2): 129-130.

    Google Scholar

    [34] LIU RUIZENG, QIN WENQING, JIAO FEN, et al. Flotation separation of chalcopyrite from galena by sodium humate and ammonium persulfate[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(1): 265-271. doi: 10.1016/S1003-6326(16)64113-4

    CrossRef Google Scholar

    [35] YUAN DUOWEI, XIE LEI, SHI XINGWEI, et al. Selective flotation separation of molybdenite and talc by humic substances[J]. Minerals Engineering, 2017, 117: 34-41.

    Google Scholar

    [36] WEI QIAN, DONG LIUYANG, JIAO FEN, et al. The synergistic depression of lime and sodium humate on the flotation separation of sphalerite from pyrite[J]. Minerals Engineering, 2021, 163: 106779. doi: 10.1016/j.mineng.2021.106779

    CrossRef Google Scholar

    [37] 王晨飞, 杨亮, 崔萍. 羧甲基淀粉研究新进展[J]. 染整技术, 2016, 38(11): 1-5. doi: 10.3969/j.issn.1005-9350.2016.11.001

    CrossRef Google Scholar

    [38] VIŠIć KSENIJA, PUŠIć TANJA, ĈURLIN MIRJANA. Carboxymethyl cellulose and carboxymethyl starch as surface modifiers and greying inhibitors in washing of cotton fabrics[J]. Polymers, 2021, 13(7): 1174. doi: 10.3390/polym13071174

    CrossRef Google Scholar

    [39] 张锁君. 羧甲基纤维素对抑制滑石浮选的作用机理[J]. 洛阳师范学院学报, 2014(5): 62-64.

    Google Scholar

    [40] 欧乐明, 齐超. 非极性表面矿物滑石与辉钼矿浮选分离中的多糖抑制[J]. 金属矿山, 2015(5): 85-89.

    Google Scholar

    [41] SHORTRIDGE PG, HARRIS PJ, BRADSHAW DJ, et al. The effect of chemical composition and molecular weight of polysaccharide depressants on the flotation of talc[J]. International Journal of Mineral Processing, 2000, 3(59): 215-224.

    Google Scholar

    [42] 齐超, 欧乐明, 邱章伟, 等. 不同种CMC对两种非极性矿物表面的抑制作用[J]. 有色金属工程与科学, 2015, 6(6): 88-94.

    Google Scholar

    [43] 罗春华, 张秀品, 苏晓晖. 抑制剂CMC在青海某硫化矿铜镍矿浮选中的应用研究[J]. 2017, 7(1): 55-59.

    Google Scholar

    [44] 李长斌, 张国范, 刘洪江, 等. 铜离子对CMC浮选分离滑石和黄铁矿的影响[J]. 有色金属工程, 2020, 10(6): 65-69.

    Google Scholar

    [45] 白睿, 魏志聪, 彭蓉, 等. 铜铅硫化矿物浮选分离中铅抑制剂的研究进展[J]. 矿产保护与利用: 1-11[2021-04-19]. https://doi.org/10.13779/j.cnki.issn1001-0076.2021.07.003.

    Google Scholar

    [46] 孟书青, 黄炎珠, 何志权. CMC在浮选分离铅锌矿中的作用[J]. 中南矿冶学院学报, 1981(4): 49-55.

    Google Scholar

    [47] 迟晓鹏, 王纪镇, 邓海波, 等. 铜铅分离新型铅抑制剂研究[J]. 金属矿山, 2013(11): 56-59.

    Google Scholar

    [48] 吉毅, 李宗石, 乔卫红. 瓜尔胶的化学改性[J]. 日用化学工业, 2005, 35(2): 111-114.

    Google Scholar

    [49] DAVID A. BEATTIE, LE HUYNH, GILLIAN B. KAGGWA, et al. Influence of adsorbed polysaccharides and polyacrylamides on talc flotation[J]. International Journal of Mineral Processing, 2006, 78(4): 238-349.

    Google Scholar

    [50] LUO TONGTONG, SUN LITIAN, CHEN YANNAN, et al. Synthesis and carboxymethyl guar gum depressant and its application in beneficiation[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2018, 43(3): 36-42.

    Google Scholar

    [51] 罗彤彤, 孙立田, 陈雁南, 等. 瓜尔胶选矿抑制剂环保型合成工艺研究[J]. 铜业工程, 2018(1): 48-50.

    Google Scholar

    [52] 范培强. 有机调整剂对蛇纹石与黄铁矿浮选行为影响的研究[D]. 昆明: 昆明理工大学, 2019.

    Google Scholar

    [53] AUDREY BEAUSSART, LUKE PARKINSON, AGNIESEZKA MIERCZYNSKAVASILEV, et al. Adsorption of modified dextrins on molybdenite: AFM imaging, contact angle, and flotation studies[J]. Journal of Colloid and Interface Science, 2012, 368(1): 608-615.

    Google Scholar

    [54] MAGNUS NORGREN, HAKEN EDLUND. Lignin: Recent advances and emerging applications[J]. Current Opinion in Colloid and Interface Science, 2014, 19(5): 409-416.

    Google Scholar

    [55] 张保平, 郭美辰, 刘运, 等. 木质素及其衍生物在提取冶金中的研究进展[J]. 生物加工过程, 2018, 16(6): 80-87.

    Google Scholar

    [56] 张其东. 辉钼矿与滑石可浮性差异调控基础研究[D]. 沈阳: 东北大学, 2016.

    Google Scholar

    [57] OUYANG XINPING, QIU XUEQIN, CHEN P. Physicochemical characterization of calcium lignosulfonate-a potentially useful water reducer[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282: 489-497.

    Google Scholar

    [58] MU YUFAN, PENG YONGJUN, ROLF ANDERAS LAUTEN. Electrochemistry aspects of pyrite in the presence of potassium amyl xanthate and a lignosulfonate-based biopolymer depressant[J]. ElectrochimicaActa, 2015, 174(1): 133-142.

    Google Scholar

    [59] MU YUFAN, PENG YONGJUN, ROLF A. LAUTEN. The depression of copper-activated pyrite in flotation by biopolymers with different compositions[J]. Minerals Engineering, 2016, 96-97: 113/122.

    Google Scholar

    [60] 刘润清. 利用工业废弃物合成选矿药剂及其在铜铅锌铁硫化矿浮选中的作用机制[D]. 长沙: 中南大学, 2010.

    Google Scholar

    [61] PUGH R J. Macromolecular organic depressants in sulphide flotation-A review, 1. Principles, types and applications[J]. International Journal of Mineral Processing, 1989, 25(1-2): 101-130.

    Google Scholar

    [62] 梁爽, 路亮, 张行荣. 有机抑制剂在黄铁矿浮选中的研究进展[J]. 中国矿业, 2020, 29(S2): 300-302+307.

    Google Scholar

    [63] MOODY G. The use of polyacrylamides in mineral processing[J]. Minerals Engineering, 1992, 5(3-5): 479-492.

    Google Scholar

    [64] AIMONE FM, BOOTH RB. Flotation of ores using addition polymers as depressants[J]. US, 1956.

    Google Scholar

    [65] BOULTON A, FORNASIERO D, RALSTON J. Selective depression of pyrite with polyacrylamide polymers[J]. International Journal of Mineral Processing, 2001, 61: 13-22.

    Google Scholar

    [66] HUANG PENG, WANG LEI, LIU QI. Depressant function of high molecular weight polyacrylamide in the xanthate flotation of chalcopyrite and galena[J]. International Journal of Mineral Processing, 2014, 128: 6-15.

    Google Scholar

    [67] ZHANG JIANFENG, HU YUEHUA, WANG DIANZUO, et al. Depressing effect of hydroxamic polyacrylamide on pyrite[J]. Journal of Central South University of Technology, 2004, 11(4): 380-384.

    Google Scholar

    [68] ZHANG XINGRONG, ZHU YANGGE, ZHENG GUIBING, et al. An investigation into the selective separation and adsorption mechanism of a macromolecular depressant in the galena-chalcopyrite system[J]. Minerals Engineering, 2019, 134: 291-299.

    Google Scholar

    [69] ZHANG XINGRONG, LU LIANG, ZENG HONG, et al. A macromolecular depressant for galena and its flotation behavior in the separation from molybdenite[J]. Minerals Engineering, 2020, 157: 106576.

    Google Scholar

    [70] ZHANG XINGRONG, LU LIANG, CAO YIJUN, et al. The flotation separation of molybdenite from chalcopyrite using a polymer depressant and insights to its adsorption mechanism[J]. Chemical Engineering Journal, 2020, 395: 125137.

    Google Scholar

    [71] ZHANG XINGRONG, QIAN ZHIBO, ZHENG GUIBING, et al. The design of a macromolecular depressant for galena based on DFT studies and its application[J]. Minerals Engineering, 2017, 112: 50-56.

    Google Scholar

    [72] 齐丁丁, 李治华, 胡熙庚. 用聚丙烯酸钠分离黄铜矿和方铅矿[J]. 矿冶工程, 1991(3): 32-34+38.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(3167) PDF downloads(64) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint