Citation: | WEI Min, LÜ Jinfang, ZHENG Yongxing, GAo Tianrui, QUAN Yingcong. Research Progress on the Depression Effect and Mechanism of Starch for Sulfide Minerals and Gangue[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 58-64. doi: 10.13779/j.cnki.issn1001-0076.2021.02.009 |
With the continuous improvements of the mine environmental protection of China, the research and development of green beneficiation reagents are particularly important. Starch is wide Source, cheap, green, renewable, and easy degradable. It is often used as a depressant for sulfide minerals such as pyrite, galena, molybdenite and silicates such as hornblende, talc, serpentine, etc. This paper mainly introduces the structures and properties of starch, and expounds the role of starch in flotation of sulfide minerals and gangue minerals. In addition, the depression mechanisms are revealed. The paper provides the references for the scholars to carry out the in-depth research on starch and realize the wide application of starch in mineral processing fields.>
[1] | LASKOWSK J. S., LIU Q., O'CONNOR C. T, et al. Current understanding of the mechanism of polysaccharide adsorption at the mineral/aqueous solution interface[J]. International Journal of Mineral Processing, 2007, 84(1/4): 59-68. |
[2] | 陈磊. 功能淀粉糊精的制备及其应用研究[D]. 广州: 华南理工大学, 2014. |
[3] | 王强强. 白钨、萤石和方解石浮选分离淀粉类抑制剂及抑制机理研究[D]. 赣州: 江西理工大学, 2018. |
[4] | KAUSUBH SHRIMALI, JAN D. Miller. Polysaccharide Depressants for the Reverse Flotation of Iron Ore[J]. Transactions of the Indian Institute of Metals, 2016, 69(1): 83-95. doi: 10.1007/s12666-015-0708-4 |
[5] | 孙倩, 马云翔, 李海燕, 等. 介孔交联阳离子淀粉的特性表征[J]. 甘肃农业大学学报, 2020, 55(5): 225-232. |
[6] | 包浩. 两种酯化变性大米淀粉的制备及其结构与性质的研究[D]. 湘潭: 湘潭大学, 2015. |
[7] | 邓艳, 柳春, 罗想平, 等. 阴离子淀粉研究进展[J]. 大众科技, 2015(6): 48-51. doi: 10.3969/j.issn.1008-1151.2015.06.017 |
[8] | 伍喜庆, 王志熙, 岳涛. 铁离子淀粉配合物在某铁矿石反浮选中的抑制行为及机理[J]. 金属矿山, 2017(11): 70-74. doi: 10.3969/j.issn.1001-1250.2017.11.014 |
[9] | FLETCHER BRENTON L, CHIMONYO WONDER, PENG YJ, et al. A comparison of native starch, oxidized starch and CMC as copper-activated pyrite depressants[J]. http://doi.org/10.1016/j.mineng.2020.106532 |
[10] | ZHAO C, DENG L, FANG H, et al. Mixed culture of recombinant Trichoderma reesei and Aspergillus niger for cellulase production to increase the cellulose degrading capability[J]. Biomass and Bioenergy, 2018, 112: 93-98. doi: 10.1016/j.biombioe.2018.03.001 |
[11] | AGORHOM E. A, SKINNER W, ZANIN M. Post-regrind selective depression of pyrite in pyritic copper-gold flotation using aeration and diethylenetriamine[J]. Minerals Engineering, 2015, 72: 36-46. doi: 10.1016/j.mineng.2014.11.019 |
[12] | AHMADI M, GHARABAGHI M, ABDOLLAHI H, et al. Effects of type and dosages of organic depressants on pyrite floatability in microflotation system[J]. Advanced Powder Technology, 2018, 29(12): 3155-3162. doi: 10.1016/j.apt.2018.08.015 |
[13] | S. BULATOVIC, D.M. WYSLOUZIL. Selection and evaluation of different depressants systems for flotation of complex sulphide ores[J]. Minerals Engineering, 1995, 8(1/2): 63-76. |
[14] | SARQUíS P. E, MENéNDEZ-AGUADO J. M, MAHAMUD M. M, et al. Tannins: the organic depressants alternative in selective flotation of sulfides[J]. Journal of Cleaner Production, 2014, 84(1): 723-726. |
[15] | HE MF, QIN WQ, LI WZ, et al. Pyrite depression in marmatite flotation by sodium glycerine-xanthate[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(5): 1161-1165. doi: 10.1016/S1003-6326(11)60837-6 |
[16] | WANG C, LIU R, AHMED KHOSO S, et al. Combined inhibitory effect of calcium hypochlorite and dextrin on flotation behavior of pyrite and galena sulphides[J]. http://doi.org/10.1016/j.mineng.2020.106274 |
[17] | KHOSO SULTAN AHMED, HU YH, LIU RQ, et al. Selective depression of pyrite with a novel functionally modified biopolymer in a Cu-Fe flotation system[J]. Minerals Engineering, 2019, 135: 55-63. doi: 10.1016/j.mineng.2019.02.044 |
[18] | SULTAN AHMED KHOSOABC, HU YH, TIAN MJ, et al. Evaluation of green synthetic depressants for sulfide flotation: Synthesis, characterization and floatation performance to pyrite and chalcopyrite[J]. https://doi.org/10.1016/j.seppur.2020.118138 |
[19] | HAN G, WEN SM, FENG QC, et al. Effect of starch on surface properties of pyrite and chalcopyrite and its response to flotation separation at low alkalinity[J]. https://doi.org/10.1016/j.mineng.2019.106015 |
[20] | 袁华玮. 临沧铜铅混合精矿浮选分离试验研究[D]. 昆明: 昆明理工大学, 2017. |
[21] | 余力, 刘全军, 袁华玮, 等. 铜铅混合精矿浮选分离工艺研究[J]. 昆明理工大学学报(自然科学版), 2017(1): 32-39+58. |
[22] | R.K. Rath. Adsorption, electrokinetic and differential flotation studies on sphalerite and galena using dextrin[J]. International Journal of Mineral Processing, 1999, 57(4): 265-283. doi: 10.1016/S0301-7516(99)00028-9 |
[23] | 李国栋. 抑铅浮锌分离铅锌混合精矿的工艺及机理研究[D]. 昆明: 昆明理工大学, 2014. |
[24] | 李晔, 彭勇军. 多糖在硫化矿物浮选中的应用及其作用机理[J]. 武汉化工学院学报, 1998(2): 39-43. |
[25] | LIU Q, ZHANG YH. Effect of calcium ions and citric acid on the flotation separation of chalcopyrite from galena using dextrin[J]. Minerals Engineering, 2000, 13(13): 1405-1416 doi: 10.1016/S0892-6875(00)00122-9 |
[26] | TANG M, WEN S, LIU D, et al. Effects of Heating- or Caustic-Digested Starch on its Flocculation on Hematite[J]. Mineral Processing and Extractive Metallurgy Review, 2016, 37(1): 49-57 doi: 10.1080/08827508.2015.1115986 |
[27] | TANG M, LIU Q. The acidity of caustic digested starch and its role in starch adsorption on mineral surfaces[J]. International Journal of Mineral Processing, 2012, 112/113: 94-100. doi: 10.1016/j.minpro.2012.06.001 |
[28] | LUO XM, YIN WZ, WANG YF, et al. Effect and mechanism of siderite on reverse anionic flotation of quartz from hematite[J]. Journal of Central South University, 2016, 23: 52-58 doi: 10.1007/s11771-016-3048-6 |
[29] | J·德尔楚马朗, 李长根, 林森. 在糊精存在时用黄药从工业铜精矿中浮选除去铅矿物[J]. 国外金属矿选矿, 2004(4): 34-36. |
[30] | S. M. BULATOVIC. Use of organic polymers in the flotation of polymetallic ores: A review[J]. Minerals Engineering, 1999, 12(4): 341-354. doi: 10.1016/S0892-6875(99)00015-1 |
[31] | LOPEZ VALDIVIESO A, SANCHEZ LOPEZ A. A, SONG S, et al. Dextrin as a Regulator for the Selective Flotation of Chalcopyrite, Galena and Pyrite[J]. Canadian Metallurgical Quarterly, 2007, 46(3): 301-309. doi: 10.1179/cmq.2007.46.3.301 |
[32] | LIU RZ, QIN WQ, JIAO F, et al. Flotation separation of chalcopyrite from galena by sodium humate and ammonium persulfate[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(1): 265-271. doi: 10.1016/S1003-6326(16)64113-4 |
[33] | 魏茜. 硫化铜铅矿浮选分离研究[D]. 长沙: 中南大学, 2012. |
[34] | 邱仙辉, 孙传尧, 于洋. 磷酸酯淀粉在黄铜矿及方铅矿表面吸附研究[J]. 有色金属(选矿部分), 2014(3): 86-90. |
[35] | 黄凡, 王登红, 陈毓川, 等. 中国钼矿中辉钼矿的稀土元素地球化学及其应用[J]. 中国地质, 2013(1): 287-301. doi: 10.3969/j.issn.1000-3657.2013.01.019 |
[36] | AUDREY BEAUSSART, AGNIESKA MIERCZYNSKA-VASILEV, DAVID A. BEATTIE, et al. Adsorption of Dextrin on Hydrophobic Minerals[J]. Langmuir, 2009, 25(17): 9913-9921. doi: 10.1021/la9010778 |
[37] | P.F.A. BRAGA, A.P. CHAVES, A.B. LUZ, et al. The use of dextrin in purification by flotation of molybdenite concentrates[J]. International Journal of Mineral Processing, 2014, 127: 23-27. doi: 10.1016/j.minpro.2013.12.007 |
[38] | AUDREY BEAUSSART, LUKE PARKINSON, AGNIESKA MIERCZYNSKA-VASILEV, et al. Adsorption of modified dextrins on molybdenite: AFM imaging, contact angle, and flotation studies[J]. Journal of Colloid & Interface Science, 2012, 368(1): 608-615. |
[39] | YUAN DW, Cadien Ken, LIU Q, et al. Separation of talc and molybdenite: challenges and opportunities[J]. https://doi.org/10.1016/j.mineng.2019.105923 |
[40] | 张其东. 辉钼矿与滑石可浮性差异调控基础研究[D]. 沈阳: 东北大学, 2016 |
[41] | Pere., CE, 肖至培. 玉米淀粉衍生物作脉石抑制剂在硫化铜浮选中的应用[J]. 矿产保护与利用, 1989(1): 30-34. |
[42] | 韦塞JG, 李长根, 崔洪山. 在铂族金属矿石浮选中应用低分子量多糖作为抑制剂[J]. 国外金属矿选矿, 2008(8): 28-33. |
[43] | 翁存建. 铜镍硫化矿物与多元镁硅酸盐浮选分离行为研究[D]. 赣州: 江西理工大学, 2016. |
[44] | 李玄武, 张亚辉, 雷治武, 等. 基于柠檬酸-改性淀粉的金川铜镍精矿降镁提质[J]. 金属矿山, 2015(7): 64-68. |
[45] | 李玄武. 硫化铜镍矿浮选降镁研究[D]. 武汉: 武汉理工大学. 2016. |
[46] | 曹钊. 组合调整剂在铜镍硫化矿浮选中降镁作用机理研究[D]. 沈阳: 东北大学, 2015. |
The structure of glucose monomer
The structure of amylose
The structure of amylopectin