Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 1
Article Contents

LIU Yan, HU Guangyan, SUN Wei, ZHANG Ye, WANG Li. Progress in Comprehensive Utilization of Carbon Solid Waste in Aluminum Electrolytic Cell[J]. Conservation and Utilization of Mineral Resources, 2021, 41(1): 166-171. doi: 10.13779/j.cnki.issn1001-0076.2021.01.024
Citation: LIU Yan, HU Guangyan, SUN Wei, ZHANG Ye, WANG Li. Progress in Comprehensive Utilization of Carbon Solid Waste in Aluminum Electrolytic Cell[J]. Conservation and Utilization of Mineral Resources, 2021, 41(1): 166-171. doi: 10.13779/j.cnki.issn1001-0076.2021.01.024

Progress in Comprehensive Utilization of Carbon Solid Waste in Aluminum Electrolytic Cell

More Information
  • The solid carbon waste generated in aluminum electrolytic cell is toxic and hazardous waste. The treatment technology of waste anode carbon particles and waste cathode carbon blocks has become a research hotspot in recent years. On the basis of research progress at home and abroad, the author adopted corresponding treatment measures to remove the harmful components and recover the valuable components according to the composition of different carbon solid wastes. Based on the understanding of waste anode carbon particles and waste cathode carbon blocks, the main methods for treating carbon solid waste of aluminum electrolytic cells at home and abroad are briefly described, which can be summarized as roasting method, bubbling fluidized bed method, alkali fusion method, vacuum smelting method, flotation, leaching, high temperature method and safe landfill method. The representative treatment processes and their advantages and disadvantages are briefly described, and a summary and prospect are made.

  • 加载中
  • [1] International Aluminium Institute. Primary aluminium production[EB/OL]. (2020-12-21)[2021-01-03]. https://www.world-aluminium.org/statistics/primary-aluminium-production/#data.

    Google Scholar

    [2] 陈喜平, 赵淋, 罗钟生. 回收铝电解炭渣中电解质的研究[J]. 轻金属, 2009(12): 21-25.

    Google Scholar

    [3] 刘长松, 武士卫. 铝电解槽生产中炭渣生成的原因及处理方法的探讨[J]. 世界有色金属, 2020(14): 19-20.

    Google Scholar

    [4] 尹小林. 一种铝电解槽炭质废料再生为替代性燃煤的方法. 中国: 107363074B[P]. 2019-07-30.

    Google Scholar

    [5] 武正君, 宋良杰. 铝电解过程危险废物的资源化利用技术[J]. 环境科学导刊, 2019, 38(5): 75-78.

    Google Scholar

    [6] CHAUKE L, GARBERS-CRAIG AM. Reactivity between carbon cathode materials and electrolyte based on industrial and laboratory data[J]. Carbon, 2013, 58(1): 40-45.

    Google Scholar

    [7] 李丹, 李立安, 宋俭. 一种铝电解槽废弃阴极炭块的回收利用方法. 中国: 107282598A[P]. 2017-10-24. .

    Google Scholar

    [8] LIU F, XIE M, LIU W, et al. Footprint of harmful substances in spent pot lining of aluminum reduction cell[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(7): 1956-1963. doi: 10.1016/S1003-6326(20)65353-5

    CrossRef Google Scholar

    [9] 张博. 铝电解槽废旧阴极处置过程中F-的迁移规律[D]. 西安: 西安建筑科技大学, 2015.

    Google Scholar

    [10] 魏应伟, 谷万铎, 王兆文. 铝电解槽废阴极炭块组成特性及浮选无害化处理试验线生产应用现状[C]//中国有色金属学会, 湖南省有色金属学会. 2012年(长沙)第五届中西部有色金属工业发展论坛论文集. 2012: 453-456.

    Google Scholar

    [11] ZOU Z, ZHU J, YAN D, et al. CFD simulation of fluidized magnetic roasting coupled with random nucleation model[J]. Chemical Engineering Science, 2021, 229, [2021-2-24]. https://doi.org/10.1016/j.ces.2020.116148.

    Google Scholar

    [12] 周峻宇. 鼓泡流化床技术处理铝电解碳渣研究[D]. 重庆: 重庆大学, 2015.

    Google Scholar

    [13] WANG H, FENG Q, TANG X, et al. Preparation of high-purity graphite from a fine microcrystalline graphite concentrate: Effect of alkali roasting pre-treatment and acid leaching process[J]. Separation Science and Technology, 2016, 51(14): 2465-2472. doi: 10.1080/01496395.2016.1206933

    CrossRef Google Scholar

    [14] YANG K, GONG P, XIN X, et al. Purifying spent carbon anode (SCA) from aluminum reduction industry by alkali fusion method to apply for Li-ion batteries anodes: From waste to resource[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 116: 121-127. doi: 10.1016/j.jtice.2020.10.034

    CrossRef Google Scholar

    [15] 柴登鹏, 候光辉, 黄海波. 真空冶金法处理铝电解碳渣试验研究[J]. 轻金属, 2016(4): 25-27.

    Google Scholar

    [16] 梅向阳, 李俊, 于站良. 浮选法回收利用碳渣实验研究[J]. 轻金属, 2016(4): 28-30.

    Google Scholar

    [17] 鲍龙飞, 赵俊学, 唐雯聃, 等. 铝电解槽废旧阴极的分选与回收利用[J]. 中国有色冶金, 2014(3): 51-54.

    Google Scholar

    [18] 卢惠民, 邱竹贤. 浮选法综合利用铝电解槽废阴极炭块的工艺研究[J]. 金属矿山, 1997(6): 33-35.

    Google Scholar

    [19] 张周, 陈雯, 谢文东, 等. 铝电解废阴极炭块回收利用综述[J]. 有色金属科学与工程, 2020(1): 28-33.

    Google Scholar

    [20] LI W, CHEN X. Development Status of Processing Technology for Spent Potlining in China[J]. Light Metals, 2013: 1064-1066.

    Google Scholar

    [21] 申士富, 牛庆仁, 骆有发, 等. 一种从电解铝废阴极炭块中回收石墨的方法. 中国: 101811695B[P]. 2012-07-11.

    Google Scholar

    [22] 肖劲, 袁杰, 田忠良, 等. 一种铝电解槽废旧阴极炭块综合回收方法. 中国: 106064813A[P]. 2016-11-02.

    Google Scholar

    [23] YAO Z, ZHONG Q, XIAO J, et al. An environmental-friendly process for dissociating toxic substances and recovering valuable components from spent carbon cathode[J]. Journal of Hazardous Materials, 2021, 404, [2021-2-24]. https://doi.org/10.1016/j.jhazmat.2020.124120.

    Google Scholar

    [24] YUAN J, XIAO J, LI F, et al. Co-treatment of spent cathode carbon in caustic and acid leaching process under ultrasonic assisted for preparation of SiC[J]. Ultrasonics Sonochemistry, 2018, 41: 608-618.

    Google Scholar

    [25] XIAO J, YUAN J, TIAN Z, et al. Comparison of ultrasound-assisted and traditional caustic leaching of spent cathode carbon (SCC) from aluminum electrolysis[J]. Ultrasonics Sonochemistry, 2018, 40: 21-29.

    Google Scholar

    [26] 尹小林. 一种铝电解槽炭质废料的清洁回收利用方法. 中国: 107381534A[P]. 2017-11-24.

    Google Scholar

    [27] SHI Z, LI W, HU X, et al. Recovery of carbon and cryolite from spent pot lining of aluminium reduction cells by chemical leaching[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(1): 222-227.

    Google Scholar

    [28] 王耀武, 狄跃忠, 王宇, 等. 一种铝电解槽废阴极炭块的提纯方法. 中国: 109437149A[P]. 2019-03-08.

    Google Scholar

    [29] LI N, GAO L, CHATTOPADHYAY K. Migration Behavior of Fluorides in Spent Potlining During Vacuum Distillation Method[M]. //Light Metals 2019. Chesonis C: Springer, Cham, 2019: 867-872[2021-2-24]. https://doi.org/10.1007/978-3-030-05864-7_105.

    Google Scholar

    [30] XIE M, LI R, ZHAO H, et al. Detoxification of spent cathode carbon blocks from aluminum smelters by joint controlling temperature-vacuum process[J]. Journal of Cleaner Production, 2020, 249, [2021-2-24]. https://doi.org/10.1016/j.jclepro.2019.119370.

    Google Scholar

    [31] SATERLAY A J, HONG Q, COMPTON R G, et al. Ultrasonically enhanced leaching: removal and destruction of cyanide and other ions from used carbon cathodes[J]. Ultrasonics Sonochemistry, 2000, 7(1): 1-6.

    Google Scholar

    [32] 冉少念, 刘显彬, 马灵菊, 等. 一种超声波碱浸和加压酸浸联合处理电解铝废阴极炭块的方法. 中国: 107857263A[P]. 2018-03-30.

    Google Scholar

    [33] BINGS N H. 铝电解槽废内衬的高温水解[J]. 轻金属, 1986(1): 35-39.

    Google Scholar

    [34] 申士富, 王金玲, 牛庆仁, 等. 电解铝固体废弃物的环境危害及处理技术研究现状[C]//中国环境科学学会. 2010中国环境科学学会学术年会论文集(第四卷). 2010: 270-276.

    Google Scholar

    [35] 王旭东, 曹国法, 朱振国, 等. 用电解铝废阴极炭块生产全石墨化碳素制品的系统及方法. 中国: 105132950B[P]. 2017-08-08.

    Google Scholar

    [36] 申士富, 骆有发, 刘海营, 等. 一种电解铝废阴极的高温处置方法. 中国: 105642649A[P]. 2016-06-08.

    Google Scholar

    [37] 李平. 危险废物处理处置技术[J]. 北方环境, 2013, 25(12): 132-134.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1563) PDF downloads(181) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint