Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 6
Article Contents

MAO Yong, WANG Zehong, TIAN Pengcheng, GAO Wei, ZHOU Pengfei. Effect of Grinding Process on Mineral Flotation Behavior and the Role of Grinding Aids[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 162-168. doi: 10.13779/j.cnki.issn1001-0076.2020.07.013
Citation: MAO Yong, WANG Zehong, TIAN Pengcheng, GAO Wei, ZHOU Pengfei. Effect of Grinding Process on Mineral Flotation Behavior and the Role of Grinding Aids[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 162-168. doi: 10.13779/j.cnki.issn1001-0076.2020.07.013

Effect of Grinding Process on Mineral Flotation Behavior and the Role of Grinding Aids

More Information
  • Grinding is a complex physical and chemical process, which affects the flotation behavior of minerals by changing the mineral surface properties and slurry properties. In the process of grinding, different grinding methods, grinding media, grinding fineness and the addition of reagents will affect the flotation behavior of minerals. The mechanism of grinding affecting mineral flotation was summarized from three main aspects: electrochemistry, solution chemistry and mechanical chemistry. Grinding aids improve the content of qualified particles in grinding products, significantly improve grinding efficiency and reduce energy consumption. The influence of grinding aids on grinding flotation system under different grinding conditions is reviewed. The future development direction of grinding aids was prospected.

  • 加载中
  • [1] 王怀. 助磨剂对矿石粉碎特性的影响及其作用机理研究[D]. 沈阳: 东北大学, 2013.

    Google Scholar

    [2] 何发钰. 磨矿环境对硫化矿物浮选的影响[D]. 沈阳: 东北大学, 2006.

    Google Scholar

    [3] 李炼. 赤铁矿磨矿助磨剂的试验研究[D]. 武汉: 武汉科技大学, 2019.

    Google Scholar

    [4] MIIKA PELTONIEMIA, RITA KALLIOA, ANTTI TANHUA. Mineralogical and surfacechemical Characterization of flotation feed andproducts after wet anddry grinding[J]. International Journal of Minerals Processing, 2020, 156: 106500.

    Google Scholar

    [5] 王怀. 助磨剂对矿石粉碎特的影响及其作用机理研究[D]. 沈阳: 东北大学, 2013.

    Google Scholar

    [6] FENG D, ALDRICH C. Comparison of the flotation of ore from themerensky reef after wet and dry grinding[J]. International Journal of Minerals Processing, 2000(2): 115-129.

    Google Scholar

    [7] 冯宏杰, 王建英, 王介良, 等. 不同磨矿方式对闪锌矿浮选的影响[J]. 有色金属(选矿部分), 2018(4): 35-40. doi: 10.3969/j.issn.1671-9492.2018.04.008

    CrossRef Google Scholar

    [8] 梁朝胜, 王建英, 张雪峰. 磨矿方式影响闪锌矿抑制剂性能的机理研究[J]. 有色金属(选矿部分), 2019(5): 76-80.

    Google Scholar

    [9] XU PENGYUN, LI JING, HU CONG, et al. Surface property variations in flotation performance of calcite particles under different grinding patterns[J]. Journal of Central South University, 2018(6): 1306-1316.

    Google Scholar

    [10] 马英强, 吴凯, 印万忠, 等. 不同粉碎方式对含金铜矿石浮选的影响[J]. 有色金属(选矿部分), 2015(5): 60-65. doi: 10.3969/j.issn.1671-9492.2015.05.014

    CrossRef Google Scholar

    [11] 江宏强. 磨矿介质对方铅矿浮选行为的影响及消除方法研究[D]. 武汉: 武汉科技大学, 2019.

    Google Scholar

    [12] 呼振峰, 孙传尧. 磨矿介质对长石和石英浮选行为的影响及机理分析[J]. 有色金属(选矿部分), 2018(3): 62-66. doi: 10.3969/j.issn.1671-9492.2018.03.013

    CrossRef Google Scholar

    [13] 李茂林, 江宏强, 崔瑞, 等. 磨矿介质对方铅矿矿浆化学性质的影响[J]. 矿产保护与利用, 2018(1): 91-95.

    Google Scholar

    [14] 聂梦宇, 韩跃新, 李艳军. 磨矿介质对闪锌矿浮选行为的影响研究[J]. 金属矿山, 2019(2): 163-167.

    Google Scholar

    [15] 肖庆飞, 康怀斌, 肖珲, 等. 碎磨技术的研究进展及其应用[J]. 铜业工程, 2016(1): 15-27. doi: 10.3969/j.issn.1009-3842.2016.01.005

    CrossRef Google Scholar

    [16] 沈传刚, 肖庆飞, 宋念平. 磨矿细度对辉钼矿浮选的影响[J]. 有色金属(选矿部分), 2017(1): 51-54. doi: 10.3969/j.issn.1671-9492.2017.01.012

    CrossRef Google Scholar

    [17] 杨稳权. 磨矿细度对胶磷矿浮选精矿产率和P2O5回收率的影响[J]. 磷肥与复肥, 2012(4): 17-19. doi: 10.3969/j.issn.1007-6220.2012.04.006

    CrossRef Google Scholar

    [18] 王怀. 助磨剂对矿石粉碎特的影响及其作用机理研究[D]. 沈阳: 东北大学, 2013.

    Google Scholar

    [19] 章晓林, 徐翔. 磨矿细度对钛铁矿浮选指标的影响[J]. 昆明冶金高等专科学校学报, 2010(5): 6-9. doi: 10.3969/j.issn.1009-0479.2010.05.002

    CrossRef Google Scholar

    [20] 何向文, 谢国先, 杜灵奕. 药剂不同添加方式对胶磷矿浮选的影响研究[J]. 化工矿物与加工, 2012(3): 4-5. doi: 10.3969/j.issn.1008-7524.2012.03.002

    CrossRef Google Scholar

    [21] 王岚. 改进药剂制度提高浮选指标[J]. 有色金属, 1959(15): 21-22.

    Google Scholar

    [22] 高伟, 王泽红, 毛勇. 助磨剂在石英粉磨中的应用研究现状及发展趋势[J]. 金属矿山, 2019(9): 22-27.

    Google Scholar

    [23] 梁冰, 尹小波, 赵礼兵, 等. 助磨剂对微细粒贫赤铁矿磨矿作用机理研究[J]. 辽宁化工, 2015(12): 1419-1422.

    Google Scholar

    [24] 王泽红, 周鹏飞, 高伟, 等. 助磨剂对石英磨矿效果及浮选行为的影响[J]. 金属矿山, 2020(3): 138-142.

    Google Scholar

    [25] 呼振峰. 磨矿因素对典型硅酸盐矿物浮选的影响[D]. 北京: 北京科技大学, 2017.

    Google Scholar

    [26] 冯其明, 许时, 陈荩. 硫化矿物浮选电化学[J]. 有色金属(选矿部分), 1990(3): 35-39.

    Google Scholar

    [27] 冯其明. 硫化矿矿浆体系中的电偶腐蚀及其对浮选的影响(Ⅰ): 电偶腐蚀原理及硫化矿矿浆体系中的电偶腐蚀模型[J]. 国外金属矿选矿, 1999(9): 2-4.

    Google Scholar

    [28] 王淀佐, 龙翔云, 孙水裕. 硫化矿的氧化与浮选机理的量子化学研究[J]. 中国有色金属学报, 1991(1): 15-23.

    Google Scholar

    [29] MCCARRON JJ, WALKER GW, BUCKLY AN. An X-ray Photoelectron Spectroscopic Investigation of Chalcopyrite and Pyrite Surface after Conditioning in Sodium Sulfide Solution[J]. International Journal of MineralsProcessing, 1990, 30(1): 1-16.

    Google Scholar

    [30] PEASE JD, CURRY DC, YOUNG MF. Designing Flotation Circuits for High FinesRecovery[J]. Minerals Engineering, 2006, 19(6): 831-840.

    Google Scholar

    [31] 王淀佐, 胡岳华. 浮选溶液化学[M]. 长沙: 湖南科学技术出版社, 1988.

    Google Scholar

    [32] SUI CC, BRIENNE SHR, RAMACHANDRA RAO S, et al. MetalTon Production and Transferbetween Sulphide Minerals[J]. Minerals Engineering, 1995(12): 1523-1539.

    Google Scholar

    [33] CORINA KC, SONGA ZG, WIESEA JG, et al. Effffect of using difffferent grinding media on the flflotation of a base metal sulphide ore[J]. Minerals Engineering, 2018(126): 24-27.

    Google Scholar

    [34] 格列姆博茨基BA, 郑飞. 浮选过程物理化学基础[M]. 北京: 冶金工业出版社, 1985.

    Google Scholar

    [35] BALAZ P, BRIANCIN J, TUCANIOVA L. Thermal Decomposition of Mechanically Activated Tetrahedrite[J]. Thermochimica Acta, 1995, 249: 375-38.

    Google Scholar

    [36] В. И. ТЮРЦНЦКОВА, 罗绍宏. 硫化矿微粒的晶格结构和浮选行为特征[J]. 国外金属矿选矿, 1985(8): 7-10.

    Google Scholar

    [37] 胡岳华, 孙伟, 覃文庆. 方铅矿浮选的机械电化学行为[J]. 中国有色金属学报, 2002(5): 1060-1064.

    Google Scholar

    [38] 谢冬冬, 侯英, 盖壮, 等. 助磨剂对氧化铁矿石磨矿动力学行为的影响[J]. 中南大学学报(自然科学版), 2020(2): 279-286.

    Google Scholar

    [39] FEI AY, LI DX, ZHANG SP, et al. Effect of polyglycerolon cement grinding aidmechanism[J]. Modern Chemical Industry, 2014(6): 80-83.

    Google Scholar

    [40] SOMASNDARAN P, SHROTRI S. Grinding aids: a review of their use, effects andmechanisms[J]. Mineral and Metall, 1994(3): 161-175.

    Google Scholar

    [41] 罗春华. 助磨剂对河南低品位铝土矿助磨效果的研究[D]. 长沙: 中南大学, 2008.

    Google Scholar

    [42] 邓善芝. 助磨剂对铝土矿粉磨效率的影响及作用机理研究[D]. 沈阳: 东北大学, 2011.

    Google Scholar

    [43] 蔡先炎. 热处理-助磨剂对鲕状赤铁矿解离的影响[D]. 武汉: 武汉科技大学, 2019.

    Google Scholar

    [44] 徐冬林, 王冬, 张旭, 等. 基于正交试验的赤铁矿石助磨剂筛选试验研究[J]. 矿产综合利用, 2018(3): 81-84.

    Google Scholar

    [45] 李三华, 周崇文, 张甲宝. 复配助磨剂在长石湿法磨矿中的应用研究[J]. 矿产综合利用, 2019(6): 129-131.

    Google Scholar

    [46] 李海兰, 王增军, 龚志辉, 等. 攀枝花钒钛磁铁矿助磨剂研究[J]. 非金属, 2019(1): 67-69.

    Google Scholar

    [47] 王泽红, 邓善芝, 于福家, 等. DA分散剂对铝土矿粉磨效率的影响及其作用机理[J]. 中国矿业, 2012(2): 96-98.

    Google Scholar

    [48] 李国峰, 王泽红, 徐昌, 等. 助磨剂提高鲕状赤铁矿磨矿效率试验研究[J]. 中国矿业, 2014(3): 110-113.

    Google Scholar

    [49] 王泽红, 蔡珊, 邓善芝, 等. 助磨剂对云母破裂能的影响[J]. 金属矿山, 2010(6): 80-84.

    Google Scholar

    [50] 田祎兰. 助磨剂在铝土矿选择性磨矿中的应用研究[D]. 沈阳: 东北大学, 2005.

    Google Scholar

    [51] 邓善芝, 王泽红, 程仁举, 等. 助磨剂作用机理的研究及发展趋势[J]. 有色矿冶, 2010(4): 25-27.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1619) PDF downloads(112) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint