Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 6
Article Contents

WU Junquan, MA Jing, WANG Yingling, QIAO Fulong, LI Jing, HU Wenbin, ZHAO Yingjie, DUAN Mengzhan, WANG Jiangwei. Experimental Study on Preparation of Ceramsite with High Silicon Iron Tailings[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 126-132. doi: 10.13779/j.cnki.issn1001-0076.2020.06.018
Citation: WU Junquan, MA Jing, WANG Yingling, QIAO Fulong, LI Jing, HU Wenbin, ZHAO Yingjie, DUAN Mengzhan, WANG Jiangwei. Experimental Study on Preparation of Ceramsite with High Silicon Iron Tailings[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 126-132. doi: 10.13779/j.cnki.issn1001-0076.2020.06.018

Experimental Study on Preparation of Ceramsite with High Silicon Iron Tailings

More Information
  • The high strength lightweight ceramsite was prepared by taking iron tailings as aggregate, and fly ash as corrector. In order to determine the sintering temperature range of the ceramsite, the thermal reaction process of the raw material was tested by TG-DSC and XRD. A group of orthogonal test is arranged and carried out to study the effect of composition ratio, sintering temperature, heating rate in high temperature zone and holding time on the bulk density, apparent density, water absorption and cylinder compression strength of ceramsite. The formulation and manufacturing process of permeable brick were optimized. The results showed that the density of ceramsite was greatly affected by composition of raw materials, while the sintering temperature had a greater impact on the water absorption and cylinder compressive strength. The high strength lightweight ceramsite with the bulk density of 888.20 kg/m3, the apparent density of 1 907.14 kg/m3, the cylinder compressive strength of 8.34 MPa, and 1h water absorption rate of 5.04% could satisfy the GB/T 17431.1—2010 standard, when the content of Al2O3 in the pellets was 17%, and the temperature was raised to 1 000 ℃ at 10 ℃/min, and then to 1 210 ℃ at 25 ℃/min, and the temperature was kept for 30 minutes. It has provided a new route for the comprehensive utilization of iron tailings.

  • 加载中
  • [1] 王德民, 胡百昌, 储腾跃, 等. 低硅铁尾矿制备建筑陶粒及其性能研究[J]. 新型建筑材料, 2016(2): 36-38. doi: 10.3969/j.issn.1001-702X.2016.02.009

    CrossRef Google Scholar

    [2] CHUAN WANG, XIN-XIN CHEN, CHAO DANG, et al. Preparation of ceramsite from C&D waste and baiyunebo tailings[J]. Procedia Environmental Sciences. 2016, 31: 211-217. doi: 10.1016/j.proenv.2016.02.028

    CrossRef Google Scholar

    [3] 朱晓丽, 陈瑞军, 幺琳, 等. 铁尾矿陶粒的制备及对生活污水的处理[J]. 金属矿山, 2015(8): 178-180. doi: 10.3969/j.issn.1001-1250.2015.08.036

    CrossRef Google Scholar

    [4] 烟台智本知识产权运营管理有限公司. 一种硫铁尾矿陶粒支撑剂的制备方法: CN201610158294. X[P]. 2016-07-27.

    Google Scholar

    [5] 杜芳, 刘阳生. 铁尾矿烧制陶粒及其性能的研究[J]. 环境工程, 2010(S1): 369-372.

    Google Scholar

    [6] 李晓光, 尤碧施, 高蕊桐, 等. 低硅铁尾矿陶粒烧结工艺优化试验[J]. 硅酸盐通报. 2019, 38(1): 294-298.

    Google Scholar

    [7] TSAI C, WANG K S, CHIOU I J. Effect of SiO2-Al2O3-flux ratio change on the bloating characteristics of lightweight aggregate material produced from recycled sewage sludge[J]. Journal of Hazardous Materials, 2006, 134(1/3): 87-93.

    Google Scholar

    [8] 刘明伟, 许国仁, 李圭白. Al_2O_3对污泥和河道底泥制取陶粒的性能影响[J]. 中国给水排水. 2013(21): 132-134.

    Google Scholar

    [9] 王征, 郭玉顺. 粉煤灰高强陶粒烧胀规律的试验研究[J]. 新型建筑材料, 2002(2): 10-14. doi: 10.3969/j.issn.1001-702X.2002.02.006

    CrossRef Google Scholar

    [10] 徐杰. 污泥烧结制陶粒机理及工艺研究[D]. 沈阳: 沈阳航空工业学院, 2010.

    Google Scholar

    [11] XU GUOREN, ZOU JINLONG, LI GUIBAI. Ceramsite made with water and wastewater sludge and its characteristics affected by SiO2 and Al2O3[J]. Environmental science & technology, 2008, 42(19): 7417-7423.

    Google Scholar

    [12] 张其勇, 徐郡, 赵蔚琳. 影响烧结陶粒性能的因素分析[J]. 山东化工, 2019(18): 26-29.

    Google Scholar

    [13] 陈珏. 粉煤灰陶粒的制备及处理含油废水的研究[D]. 北京: 北京化工大学, 2004.

    Google Scholar

    [14] 杨传猛. 铁尾矿制备烧结砖和陶粒的研究[D]. 南京: 南京理工大学, 2015.

    Google Scholar

    [15] 习嘉晨, 向晓东, 秦显显, 等. 工业固废制备陶粒的机理探讨[J]. 中国废钢铁, 2015(5): 18-22.

    Google Scholar

    [16] 郗斐, 赵大传. 轻质/超轻粉煤灰陶粒的研制及陶粒膨胀机理的探讨和应用[J]. 功能材料, 2010(S3): 518-523.

    Google Scholar

    [17] GUO Y, LI Y, CHENG F, et al. Role of additives in improved thermal activation of coal fly ash for alumina extraction[J]. Fuel Processing Technology, 2013, 110: 114-121. doi: 10.1016/j.fuproc.2012.12.003

    CrossRef Google Scholar

    [18] SAHNOUNE F, BELHOUHET H, SAHEB N, et al. Phase transformation and sintering behavior of mullite and mullite-zirconia composite materials[J]. Advances in Applied Ceramics, 2011, 110(3): 175-180. doi: 10.1179/1743676111Y.0000000004

    CrossRef Google Scholar

    [19] 罗晖. 污水污泥页岩建筑材料制备与性能研究[D]. 重庆: 重庆大学, 2010.

    Google Scholar

    [20] XU G R, ZOU J L, LI G B. Effect of sintering temperature on the characteristics of sludge ceramsite[J]. Journal of Hazardous Materials, 2008, 150(2): 394-400. doi: 10.1016/j.jhazmat.2007.04.121

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(5)

Article Metrics

Article views(1558) PDF downloads(16) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint