Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 6
Article Contents

WANG Yun, HU Baoqun, LI Mangen, FAN Pengfei. Application Suggestions and Geochemical Characteristics of Ultralarge High Quality Black Talc Ore in Guangfeng, Jiangxi Province[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 117-125. doi: 10.13779/j.cnki.issn1001-0076.2020.06.017
Citation: WANG Yun, HU Baoqun, LI Mangen, FAN Pengfei. Application Suggestions and Geochemical Characteristics of Ultralarge High Quality Black Talc Ore in Guangfeng, Jiangxi Province[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 117-125. doi: 10.13779/j.cnki.issn1001-0076.2020.06.017

Application Suggestions and Geochemical Characteristics of Ultralarge High Quality Black Talc Ore in Guangfeng, Jiangxi Province

More Information
  • In order to understand the mineral characteristics, geochemical characteristics and carbon content characteristics of black talc ore in Guangfeng District, Shangrao City, Jiangxi Province, make better use of black talc and help to build a 10 billion yuan industrial base of black talc.Based on the field investigation, petrography and geochemical analysis, some suggestions on the application of black talc are put forward.The results show that the main types of black talc in this area are pseudooolitic, brecciated and schistose talc.The main minerals in the ore are black talc, quartz and dolomite.The chemical composition of the ore is mainly SiO2, MgO and CaO.The contents of total carbon and inorganic carbon in pseudooolitic and brecciated talc are significantly lower than those in schistose talc.But the content of organic carbon is higher than that of schistose talc.The black talc in this area has preliminary reached the first grade standard of talc for plastics, ceramics, rubber and coatings.

  • 加载中
  • [1] PI-PUIG T, ANIMAS-TORICES DY, SOLé J. Mineralogical and geochemical characterization of talc from two Mexican Ore Deposits (Oaxaca and Puebla) and Nine Talcs Marketed in Mexico: Evaluation of its cosmetic uses[J]. Minerals, 2020, 10: 388. doi: 10.3390/min10050388

    CrossRef Google Scholar

    [2] 杨辉. 滑石加工工艺方法浅析[J]. 矿产保护与利用, 2014(3): 56-58.

    Google Scholar

    [3] 宗培新. 我国黑滑石产业现状及发展趋势[J]. 中国非金属矿工业导刊, 2014(1): 1-3. doi: 10.3969/j.issn.1007-9386.2014.01.001

    CrossRef Google Scholar

    [4] FAN P, LIU H, LIAO L, et al. Excellent electrochemical properties of graphene-like carbon obtained from acid-treating natural black talc as Li-ion battery anode[J]. Electrochimica Acta, 2018, 289: 407-414. doi: 10.1016/j.electacta.2018.09.079

    CrossRef Google Scholar

    [5] 秦文莉. 基于黑滑石的复合材料制备及其在功能材料领域的应用研究[D]. 杭州: 浙江大学, 2018.

    Google Scholar

    [6] 张连湘, 欧阳淇生, 巫志豪. 江西广丰黑滑石矿床成因模式及找矿方向分析[J]. 资源信息与工程, 2019, 34(6): 17-20.

    Google Scholar

    [7] 朱馨怡. 江西广丰黑滑石矿床岩石学、地球化学特征及成因探讨[D]. 北京: 中国地质大学(北京), 2020.

    Google Scholar

    [8] 李成祥. 江西广丰黑滑石矿物学研究[D]. 南京: 南京大学, 2016.

    Google Scholar

    [9] 雷焕玲. 江西广丰超大型滑石矿矿床地球化学特征及成因[D]. 南京: 南京大学, 2012.

    Google Scholar

    [10] 陈正国, 邸素梅, 祝强. 广丰黑滑石的增白试验及致黑机理探讨[J]. 非金属矿, 1993(6): 6-8.

    Google Scholar

    [11] SUN SS, MCDONOUGH WF. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, et al. Magmatism in the oceanic basins[J]. Special Publication of Geological Society of London, 1989, 42: 313-346. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [12] BOYNTON WV. Cosmochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed. ). Developments in geochemistry[J]. Amsterdam: Elsevier, 1984, 2: 63-114.

    Google Scholar

    [13] MOORE DE, LOCKNER DA. Talc friction in the temperature range 25℃-400℃: Relevance for fault-zone weakening[J]. Tectonophysics, 2008, 449: 120-132. doi: 10.1016/j.tecto.2007.11.039

    CrossRef Google Scholar

    [14] PROCHASKA W. Geochemistry and genesis of Austrian talc deposits[J]. Applied Geochemistry, 1989, 4(5): 511-525. doi: 10.1016/0883-2927(89)90008-5

    CrossRef Google Scholar

    [15] MUHAMMAD T, AKIRA I, RYOHEI T, et al. Ore Genesis and geochemical characteristics of carbonate hosted talc deposits in Nangarhar Province, Afghanistan[J]. Resource Geology, 2018, 68(4): 352-372. doi: 10.1111/rge.12174

    CrossRef Google Scholar

    [16] LEE J, JUNG H, KLEMD R, et al. Lattice preferred orientation of talc and implications for seismic anisotropy in subduction zones[J]. Earth and Planetary Science Letters, 2020, 537, 116178.

    Google Scholar

    [17] DEKOV VM, CUADROS J, SHANKS WC, et al. Deposition of talc-kerolite-smectite-smectite at seafloor hydrothermal vent fields: Evidence from mineralogical, geochemical and oxygen isotope studies[J]. Chemical Geology, 2008, 247(1/2): 171-194.

    Google Scholar

    [18] TOSCA NJ, MACDONALD FA, STRAUSS JV, et al. Sedimentary talc in Neoproterozoic carbonate successions[J]. Earth and Planetary Science Letters, 2011, 306(1/2): 11-22.

    Google Scholar

    [19] RODRÍGUEZ-RUIZ MD, ABAD I, BENTABOL M, et al. Evidences of talc-white mica assemblage in low-grade metamorphic rocks from the internal zone of the Rif Cordillera (N Morocco)[J]. Applied Clay Science, 2020, 195: 105723. doi: 10.1016/j.clay.2020.105723

    CrossRef Google Scholar

    [20] DAS BK, BIRGIT-GAYE H. Geochemistry of rewalsar lake sediment, Lesser Himalaya, India: Implications for source-area weathering, provenance and tectonic setting[J]. Geosciences Journal, 2003, 7(4): 299-312. doi: 10.1007/BF02919560

    CrossRef Google Scholar

    [21] JIN ZD, LI FC, CAO JJ, et al. Geochemistry of Daihai Lake Sediments, Inner Mongolia, North China: Implications for provenance, sedimentary sorting, and catchment weathering[J]. Geomorphology, 2006, 80(3): 147-163.

    Google Scholar

    [22] 李春荣, 陈开远. 潜江凹陷潜江组元素演化特征及其古气候意义[J]. 石油地质与工程, 2007(6): 18-21. doi: 10.3969/j.issn.1673-8217.2007.06.005

    CrossRef Google Scholar

    [23] PETER JM, SCOTT SD. Mineralogy, composition, and fluid-inclusion microthermometry of seafloor hydrothermal deposits in the southern trough of Guaymas basin, gulf of California[J]. Canadian Mineralogist, 1988, 2G: 567-587.

    Google Scholar

    [24] TOTH JR. Deposition of submarine crusts rich in manganese and iron[J]. GSA Bulletin, 1980, 91(1): 44-54. doi: 10.1130/0016-7606(1980)91<44:DOSCRI>2.0.CO;2

    CrossRef Google Scholar

    [25] 汤冬杰, 史晓颖, 裴云鹏, 等. 华北中元古代陆表海氧化还原条件[J]. 古地理学报, 2011, 13(5): 563-580.

    Google Scholar

    [26] KIMURA H, WATANABE Y. Oceanic anoxia at the precambriancambrian boundary[J]. Geology, 2001, 29(11): 995-998. doi: 10.1130/0091-7613(2001)029<0995:OAATPC>2.0.CO;2

    CrossRef Google Scholar

    [27] BRUMSACK HJ. The trace metal content of recent organic carbon-rich sediments; Implications for cretaceous black shale formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2): 344-361.

    Google Scholar

    [28] 吴朝东, 杨承运, 陈其英. 湘西黑色岩系地球化学特征和成因意义[J]. 岩石矿物学杂志, 1999, 18(1): 26-39.

    Google Scholar

    [29] 孟凡巍, 刘成林, 倪培. 全球古海水化学演化与世界主要海相钾盐沉积关系暨中国海相成钾探讨[J]. 微体古生物学报, 2012, 29(1): 62-69.

    Google Scholar

    [30] LI C, WANG R, XU H, et al. Interstratification of graphene-like carbon layers within black talc from Southeastern China: Implications to sedimentary talc formation[J]. American Mineralogist, 2016, 101(7), 1668-1678. doi: 10.2138/am-2016-5600

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(5)

Article Metrics

Article views(1584) PDF downloads(24) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint