Shuai MA, Qingfei XIAO, Fugang ZHAO, Qian ZHANG. Development and Application of Conventional Semi-self-grinding Process[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 167-171. doi: 10.13779/j.cnki.issn1001-0076.2020.04.020
Citation: |
Shuai MA, Qingfei XIAO, Fugang ZHAO, Qian ZHANG. Development and Application of Conventional Semi-self-grinding Process[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 167-171. doi: 10.13779/j.cnki.issn1001-0076.2020.04.020
|
Development and Application of Conventional Semi-self-grinding Process
-
Shuai MA1,2, ,
-
Qingfei XIAO1,2,3, , ,
-
Fugang ZHAO3,
-
Qian ZHANG1,2
-
1.
Provincial and Ministry Joint Construction of National Key Experiments on Clean Utilization of Complex Nonferrous Metal Resources, Kunming 650093, Yunnan, China
-
2.
School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
-
3.
Maanshan Research Institute Co., Ltd., China Steel Group, Ma'anshan 243000, Anhui, China
More Information
-
Corresponding author:
Qingfei XIAO, 13515877@qq.com
-
Abstract
Since the 1970s, the semi-automatic grinding process has been diversified, from the initial single-stage semi-automatic grinding process to the semi-automatic grinding + ball milling (SAB) process and then to the semi-automatic grinding + ball milling + stone crushing (SABC) process. Compared with the traditional crushing and grinding process, the semi-automatic grinding process has the advantages of low energy consumption, small footprint and simple process, and it improves the efficiency of the semi-automatic mill and increases the processing capacity of the semi-automatic mill. This article summarizes the application of semi-automatic grinding technology at home and abroad in recent years, and puts forward several suggestions for the future development of semi-automatic grinding technology.
-
-
References
[1] |
薛天利.锡石多金属硫化矿选择性磨矿行为研究[D].广西: 广西大学, 2015: 1-50.
Google Scholar
|
[2] |
杨采文, 毛莹博, 邓久帅, 等.矿山磨矿设备的应用及研究进展[J].现代矿业, 2015(7):190-192, 195.
Google Scholar
|
[3] |
KANDA Y, GUNJI H, TAKEUCHI H, et al. Rate constants of wet and dry ball mill grindings[J]. Zairyo/Journal of the Society of Materials Science, 1978(8): 663-666.
Google Scholar
|
[4] |
JONES S M J. Autogenous and semiautogenous mills 2005 update[J]. Proceedings of International Autogenous and Semiautogenous Grinding Technology, 2006(1) : 398-425.
Google Scholar
|
[5] |
邓继业.大型半自磨机回转体结构及强度研究[D].长春: 吉林大学, 2012: 1-25.
Google Scholar
|
[6] |
杨琳琳, 文书明.自磨机和半自磨机的发展和应用[J].国外金属矿选矿, 2005(7) :13-16.
Google Scholar
|
[7] |
尤滕胜, 谢昆.单段半自磨工艺及应用[J].中国矿山工程, 2015(5):58-61, 68.
Google Scholar
|
[8] |
邵空喻.自磨/半自磨技术发展的历程和体会[J].现代矿业, 2009(9):38-41.
Google Scholar
|
[9] |
黄国智, 方启学, 任翔, 等.全自磨半自磨磨矿技术[M].北京:冶金工业出版社, 2018:289-290.
Google Scholar
|
[10] |
张国斌.半自磨工艺在国内的应用和发展[J].山东工业技术, 2018(18):49.
Google Scholar
|
[11] |
Marilyn Scales. Economics of scale [J]. Canadiam Minjng Joural, 1989(6): 87.
Google Scholar
|
[12] |
甘经超.美国科珀顿铜选矿厂及其铜钼分离工艺[J].国外金属矿选矿, 2001(4):44-45, 43.
Google Scholar
|
[13] |
汪太平, 肖庆飞, 李博.冬瓜山铜矿一段磨矿产品粒度组成优化研究[J].矿产保护与利用, 2014(4):22-26.
Google Scholar
|
[14] |
邓禾淼, 肖庆飞, 李博.铸铁段作为磨矿介质在冬瓜山铜矿的试验研究[J].矿冶, 2014(4):5-8.
Google Scholar
|
[15] |
唐友华.基于EDEM的半自磨机颗粒的碰撞分析[D].云南: 昆明理工大学, 2016: 1-30.
Google Scholar
|
[16] |
ROWE W B. Grinding process control [J].Principles of Modern Grinding Technology: Second Edition, 2014, 21(6): 221-240.
Google Scholar
|
[17] |
贾仰武, 王漪靖, 税新峰.半自磨工艺及环形电机在南美矿山的应用——赴智利技术考察纪实[J].矿业工程, 2018(1):54-59.
Google Scholar
|
[18] |
王肖江.基于离散元法的武山铜矿半自磨介质优化研究[D].昆明: 昆明理工大学, 2012: 1-40.
Google Scholar
|
[19] |
洪建华.2.25万t/d SABC工艺在德兴铜矿的应用[J].有色金属(选矿部分), 2011(S1):124-126.
Google Scholar
|
[20] |
GODWIN L K M. Crushing practice impact on SAG milling: addition of secondary crushing circuit at GEITA gold mine [C] // Vancouver: SAG 2006: 356-371.
Google Scholar
|
[21] |
井维和, 刘伟, 洪保磊等.乌山铜钼矿一期碎磨流程设计及生产实践[J].黄金, 2015(3):63-66.
Google Scholar
|
-
-
Access History