[1] |
胡熙庚, 等.有色金属硫化矿选矿[M].北京:冶金工业出版社, 1987.
Google Scholar
|
[2] |
CHENG H F, LIU Q F, HUANG M, et al, Application of TG-FTIR to study SO2 evolved during the thermal decomposition of coal-derived pyrite[J]. Thermochim Acta, 2013, 555: 1-6. doi: 10.1016/j.tca.2012.12.025
CrossRef Google Scholar
|
[3] |
赵珊茸.结晶学及矿物学[M].北京:高等教育出版社, 2004.
Google Scholar
|
[4] |
何铸文, 杨忆.黄铁矿型结构的晶体化学[J].矿物学报, 1996(4):423-430.
Google Scholar
|
[5] |
王淀佐, 龙翔云, 孙水裕.硫化矿的氧化与浮选机理的量子化学研究[J].中国有色金属学报, 1991, 1(1):15-23.
Google Scholar
|
[6] |
杨升旺, 李江丽, 李佳磊, 等.矿物学因素对黄铁矿浮选行为影响的研究进展[J].有色金属(选矿部分), 2019(6):12-17.
Google Scholar
|
[7] |
姜凯, 刘杰, 韩跃新, 等.自然氧化对黄铁矿可浮性的影响及其机理研究[J].金属矿山, 2019(2):111-114.
Google Scholar
|
[8] |
LEPPINEN, JO. FTIR and flotation investigation of the adsorption of ethyl xanthate on activated and non-activated sulfide minerals[J]. International Journal of Mineral Processing, 1990, 30 (3-4): 245-263. doi: 10.1016/0301-7516(90)90018-T
CrossRef Google Scholar
|
[9] |
WARK, IW, COX AB. Principles of flotation, I An experimental study of the effect of xanthates on contact at mineral surfaces[J]. Transactions of the American Institute of Mining and Metallurgical Engineers, 1934, 48: 189-244.
Google Scholar
|
[10] |
于宏东, 孙传尧.不同成因类型黄铁矿的浮游特性[J].有色金属, 2009, 61(3):111-115.
Google Scholar
|
[11] |
石原透.黄铁矿选矿的相关研究[J].日本矿业会志, 1967, 83(947):532-534.
Google Scholar
|
[12] |
金泉常正.晶格缺陷对黄铁矿浮选特性的影响[J].日本矿业会志, 1970, 86(992):853-858.
Google Scholar
|
[13] |
原田种臣.性状不同的黄铁矿可浮性差异比较[J].日本矿业会志, 1967, 83(949):749-753.
Google Scholar
|
[14] |
陈建华, 钟建莲, 李玉琼, 等.黄铁矿、白铁矿和磁黄铁矿的电子结构及可浮性[J].中国有色金属学报, 2011, 21(7):1719-1727.
Google Scholar
|
[15] |
凌竞宏, 胡熙庚, 吴亨魁.三种不同类型矿床黄铁矿浮选行为的比较[J].中南矿冶学院学报, 1982(4):62-69.
Google Scholar
|
[16] |
陈述文, 胡熙庚.黄铁矿化学组成不均匀性与可浮性关系[J].湖南有色金属, 1991(5):278-283.
Google Scholar
|
[17] |
姜毛, 张覃, 李龙江.杂质对黄铁矿电子性质及可浮性影响的密度泛函理论研究[J].矿物学报, 2014, 34(4):528-534.
Google Scholar
|
[18] |
胡岳华, 章顺力, 邱冠周, 等.石灰抑制黄铁矿的活化机理研究[J].中南工业大学学报, 1995(2):176-180.
Google Scholar
|
[19] |
苏超, 申培伦, 李佳磊, 等.黄铁矿浮选的抑制与解抑活化研究进展[J].化工进展, 2019, 38(4):1921-1929.
Google Scholar
|
[20] |
Bao Guo, Yongjun Peng, Rodolfo Espinosa-Gomez. Effects of free cyanide and cuprous cyanide on the flotation of gold and silver bearing pyrite[J]. Minerals Engineering, 2015, 71: 194-204. doi: 10.1016/j.mineng.2014.11.016
CrossRef Google Scholar
|
[21] |
黄有成, 赵礼兵, 代淑娟.黄铁矿浮选抑制剂研究现状[J].有色矿冶, 2011, 27(3):24-29, 37.
Google Scholar
|
[22] |
MU Y F, PENG Y J. The role of sodium metabisulphite in depressing pyrite in chalcopyrite flotation using saline water[J]. Minerals Engineering, 2019, 142: 105921. doi: 10.1016/j.mineng.2019.105921
CrossRef Google Scholar
|
[23] |
OLSEN, C, MAKNI S, HART B, et al. Application of surface chemical analysis to the industrial flotation process of a complex sulphide ore[C]. In: XXVI International Mineral Processing Congress, IMPC 2012, New Delhi, India.
Google Scholar
|
[24] |
梁溢强, 刘鹏, 宋涛, 等.低碱度下高硫铅锌矿的无钙浮选分离工艺研究[J].有色金属(选矿部分), 2019(5):71-75.
Google Scholar
|
[25] |
JANETSKI ND, WOODBURN SL, WOODS R. An electrochemical investigation of pyrite flotation and depression[J]. International Journal of Mineral Processing, 1977, 4(3): 227-239. doi: 10.1016/0301-7516(77)90004-7
CrossRef Google Scholar
|
[26] |
LI J, MILLER JD, WANG RY. The ammoniacal thiosulfate system for precious metal recovery[C]. In: Proceedings XIX International Mineral Processing Congress, SME, Littleton, Colorado, USA, 1995, pp: 37-42.
Google Scholar
|
[27] |
KHMELEVA TN, SKINNER W, BEATTIE DA. Depressing mechanisms of sodium bisulphite in the collectorless flotation of copper-activated sphalerite[J]. International Journal of Mineral Processing, 2005, 76 (1-2): 43-53. doi: 10.1016/j.minpro.2004.10.001
CrossRef Google Scholar
|
[28] |
KHMELEVA TN, CHAPELET JK, SKINNER WM, ea tl. Depression mechanisms of sodium bisulphite in the xanthate-induced flotation of copper activated sphalerite[J]. International Journal of Mineral Processing, 2006, 79(1): 61-75. doi: 10.1016/j.minpro.2005.12.001
CrossRef Google Scholar
|
[29] |
D VILA-PULIDO GI, URIBE-SALAS A, ESPINOSA-G MEZ, R. Comparison of the depressant action of sulfite and metabisulfite for Cu-activated sphalerite[J]. International Journal of Mineral Processing, 2011, 101 (1-4): 71-74. doi: 10.1016/j.minpro.2011.07.012
CrossRef Google Scholar
|
[30] |
BULUT G, CEYLAN A, SOYLU B, et al. Role of starch and metabisulphite on pure pyrite and pyritic copper ore flotation[J]. Physiochemical Problems of Mineral Processing, 2011, 48(1): 39-48.
Google Scholar
|
[31] |
周源, 余新阳.无机氧化剂对黄铁矿和黄铜矿可浮性的影响[J].金属矿山, 2005(2):33-35, 41.
Google Scholar
|
[32] |
M·C·杰沃娅, 崔洪山, 肖力子.有色金属矿石浮选过程中的高锰酸钾法[J].国外金属矿选矿, 2006(2):21, 37.
Google Scholar
|
[33] |
邱廷省, 方夕辉, 钟常明.几种黄铁矿抑制剂的抑制性能比较[J].矿产综合利用, 2005(3):6-9.
Google Scholar
|
[34] |
BAI S J, PAN Y, LI C L, et al. Depression of pyrite in a low-alkaline medium with added calcium hypochlorite: Experiment, visual MINTEQ models, XPS, and ToF-SIMS studies [J]. Minerals Engineering, 2019, 14:1-10.
Google Scholar
|
[35] |
OWUSU C, ADDAI-MENSAH J, FORNASIERO D, et al. Estimating the electrochemical reactivity of pyrite ores-their impact on pulp chemistry and chalcopyrite flotation behavior[J]. Advanced Powder Technology, 2013, 24(4): 801-809.
Google Scholar
|
[36] |
BOULTON A, FORNASIERO D, RALSTON J. Depression of iron sulphide flotation in zinc roughers[J]. Minerals Engineering, 2001, 14(9): 1067-1079. doi: 10.1016/S0892-6875(01)00112-1
CrossRef Google Scholar
|
[37] |
HE S, SKINNER W, FORNASIERO D. Effect of oxidation potential and zinc sulphate on the separation of chalcopyrite from pyrite[J]. International Journal of Mineral Processing, 2006, 80(2-4): 169-176. doi: 10.1016/j.minpro.2006.03.009
CrossRef Google Scholar
|
[38] |
BICAK O, EKMEKCI Z, BRADSHAW DJ, et al. Adsorption of guar gum and CMC on pyrite[J]. Minerals Engineering, 2007, 20 (10): 996-1002. doi: 10.1016/j.mineng.2007.03.002
CrossRef Google Scholar
|
[39] |
FENG B, FENG Q, LU Y, et al. The effect of PAX/CMC addition order on chlorite/pyrite separation[J]. Minerals Engineering, 2013, 42: 9-12. doi: 10.1016/j.mineng.2012.10.011
CrossRef Google Scholar
|
[40] |
LASKOWSK JS, LIU Q, O'CONNOR CT. Current understanding of the mechanism of polysaccharide adsorption at the mineral/aqueous solution interface[J]. International Journal of Mineral Processing, 2007, 84 (1-4): 59-68. doi: 10.1016/j.minpro.2007.03.006
CrossRef Google Scholar
|
[41] |
朱贤文, 冯博, 彭金秀, 等.以羟乙基纤维素为抑制剂浮选分离铜硫[J].金属矿山, 2017(7):97-100.
Google Scholar
|
[42] |
LÓ PEZ VALDIVIESO A, CELEDN CERVANTES T, SONG S, et al. Dextrin as a non-toxic depressant for pyrite in flotation with xanthates as collector[J]. Minerals Engineering, 2004, 17 (9-10): 1001-1006. doi: 10.1016/j.mineng.2004.04.003
CrossRef Google Scholar
|
[43] |
LIU Q, ZHANG Y, LASKOWSKI JS. The adsorption of polysaccharides onto mineral surfaces: an acid/base interaction[J]. International Journal of Mineral Processing, 2000, 60 (3-4): 229- 245. doi: 10.1016/S0301-7516(00)00018-1
CrossRef Google Scholar
|
[44] |
HAN G, WEN S M, WANG H, et al. Effect of starch on surface properties of pyrite and chalcopyrite and its response to flotation separation at low alkalinity[J]. Minerals Engineering, 2019, 143: 106015. doi: 10.1016/j.mineng.2019.106015
CrossRef Google Scholar
|
[45] |
A·L·瓦尔帝维叶索, 崔洪山, 林森.在黄药作捕收剂浮选时用糊精作为黄铁矿的无毒抑制剂的研究[J].国外金属矿选矿, 2004(11):29-32, 28.
Google Scholar
|
[46] |
LIU D Z, ZHANG G F, CHEN Y F, et al. Investigations on the utilization of konjac glucomannan in the flotation separation of chalcopyrite from pyrite[J]. Minerals Engineering, 2020, 145: 106098. doi: 10.1016/j.mineng.2019.106098
CrossRef Google Scholar
|
[47] |
SULTAN AHMED KHOSO, HU Y H, LYU F, et al. Selective separation of chalcopyrite from pyrite with a novel non-hazardous biodegradable depressant[J]. Journal of Cleaner Production, 2019, 232: 888-897. doi: 10.1016/j.jclepro.2019.06.008
CrossRef Google Scholar
|
[48] |
HAN G, WEN SM, WANG H, et al. Lactic acid as selective depressant for flotation separation of chalcopyrite from pyrite and its depression mechanism[J]. Journal of Molecular Liquids, 2019, 296: 111774. doi: 10.1016/j.molliq.2019.111774
CrossRef Google Scholar
|
[49] |
易翀, 熊道陵.乳酸黄原酸钠合成及其对黄铁矿与黄铜矿抑制的作用机理[J].有色金属科学与工程, 2018, 9(2):81-88.
Google Scholar
|
[50] |
邱仙辉, 于洋, 张春菊.鞣酸体系下黄铜矿与黄铁矿浮选动力学分析[J].化工进展, 2016, 35(7):2258-2262.
Google Scholar
|
[51] |
HUANG P, CAO M, LIU Q. Selective depression of pyrite with chitosan in Pb-Fe sulfide flotation[J]. Minerals Engineering, 2013, 46-47: 45-51. doi: 10.1016/j.mineng.2013.03.027
CrossRef Google Scholar
|
[52] |
OUYANG X, QIU X, CHEN P. Physicochemical characterization of calcium lignosulfonate—A potentially useful water reducer[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282-283: 489-497.
Google Scholar
|
[53] |
MU YF, PENG Y J, ROLF A LAUTEN. The flotation of pyrite and chalcopyrite in the presence of biopolymers[C]. In: Yianatos, J. (Ed.), Juan Yianatos, Proceedings of the XXVII International Mineral Processing Congress: Impc 2014. Gecamin Publications, Santiago, Chile, 2014: 132-142.
Google Scholar
|
[54] |
MU YF, PENG Y J, ROLF A LAUTEN. Electrochemistry aspects of pyrite in the presence of potassium amyl xanthate and a lignosulfonate-based biopolymer depressant[J]. Electrochimica Acta, 2015, 174: 133-142. doi: 10.1016/j.electacta.2015.05.150
CrossRef Google Scholar
|
[55] |
MU YF, PENG Y J, ROLF A LAUTEN. The depression of copper-activated pyrite in the flotation by biopolymers with different compositions[J]. Minerals Engineering, 2016, 96-97: 113-122. doi: 10.1016/j.mineng.2016.06.011
CrossRef Google Scholar
|
[56] |
RASHCHI F, FINCH JA, SUI C. Action of DETA, dextrin and carbonate on lead -contaminated sphalerite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 245 (1-3): 21-27.
Google Scholar
|
[57] |
AGORHOM EA, SKINNER W, ZANIN M. Diethylenetriamine depression of Cu-activated pyrite hydrophobised by xanthate[J]. Minerals Engineering, 2014, 57: 36-42. doi: 10.1016/j.mineng.2013.12.010
CrossRef Google Scholar
|
[58] |
XU ZH, RAO SR, FINCH JA, KELEBEK S, WELLS P. Role of diethylene triamine (DETA) in pentlandite-pyrrhotite separation - Part 1: complexation of metals with DETA. Transactions - Institution of Mining and Metallurgy[J]. Section C. Mineral processing & extractive metallurgy, 1997(106): 15-20.
Google Scholar
|
[59] |
SUI C, FINCH JA, XU Z. Effect of diethylenetriamine on xanthane interaction with Pb-contaminated pyrite[J]. Minerals Engineering, 1998, 11(7): 639-649. doi: 10.1016/S0892-6875(98)00048-X
CrossRef Google Scholar
|
[60] |
KELEBEK S, TUKEL C. The effect of sodium metabisulfite and triethylenetetramine system on pentlandite-pyrrhotite separation[J]. International Journal of Mineral Processing, 1999, 57(2): 135-152. doi: 10.1016/S0301-7516(99)00012-5
CrossRef Google Scholar
|
[61] |
WANG Z, QIAN YL, XU LH, et al. Selective chalcopyrite flotation from pyrite with glycerine-xanthate as depressant[J]. Minerals Engineering, 2015, 74: 86-90. doi: 10.1016/j.mineng.2015.01.008
CrossRef Google Scholar
|
[62] |
郭蔚, 彭金秀, 冯博, 等.刺槐豆胶在铜硫分离中的抑制作用及机理分析[J].矿产保护与利用, 2018(1):76-80.
Google Scholar
|
[63] |
徐会华, 蔡振波, 林榜立.新型有机抑制剂在铜硫分离试验中的应用[J].现代矿业, 2016, 32(11):68-70.
Google Scholar
|
[64] |
甘恒, 陈建华.自然pH值下铜硫分离试验[J].现代矿业, 2016, 32(11):71-73.
Google Scholar
|
[65] |
陶坤, 魏明安.新型铜硫分离有机抑制剂BKY-1的机理研究[J].有色金属(选矿部分), 2013(5):73-77.
Google Scholar
|
[66] |
郎召有, 李昕妍, 刘志成, 等.某高硫铅锌矿新型硫抑制剂的试验研究[J].云南冶金, 2019, 48(5):34-40.
Google Scholar
|
[67] |
喻贵芳.城门山铜矿低碱度铜硫分离技术[J].有色冶金设计与研究, 2013, 34(6):7-10.
Google Scholar
|
[68] |
付强.某铜矿低碱度铜硫分离试验[J].现代矿业, 2016, 32(1):74-77.
Google Scholar
|
[69] |
张新海, 李勇, 马荣锴, 等.某螯合捕收剂协同有机盐抑制剂浮选国外某高硫铜矿[J].矿产保护与利用, 2019, 39(4):135-139.
Google Scholar
|
[70] |
何小民, 徐其红, 杨政国, 等.新型抑制剂HXM-2在铜硫分离中的应用研究[J].矿冶工程, 2016, 36(4):41-44.
Google Scholar
|
[71] |
黄有成, 赵礼兵.无机抑制剂在低碱度铅锌硫分离中的作用研究[J].现代矿业, 2012, 27(1):23-29, 46.
Google Scholar
|
[72] |
李凤久, 张洪周.某复杂难选铜硫矿铜硫分离试验研究[J].矿产综合利用, 2017(5):31-36.
Google Scholar
|
[73] |
岑正伟.大宝山铜硫矿选铜抑制剂的研究与应用[J].南方金属, 2018(4):15-19.
Google Scholar
|
[74] |
周源, 刘亮, 曾娟.低碱度下组合抑制剂对黄铜矿和黄铁矿可浮性的影响[J].金属矿山, 2009(6):69-72.
Google Scholar
|
[75] |
徐姣, 吴金鑫, 张月, 等.组合调整剂在细粒级尾矿铜硫分离中的研究与应用[J].中国钼业, 2018, 42(5):33-36.
Google Scholar
|
[76] |
张月, 高延雄, 张硕, 等.新型环保抑制剂在细粒级硫化铜硫分离中的试验研究[J].湖南有色金属, 2019, 35(2):19-22.
Google Scholar
|
[77] |
肖骏, 莫振军, 陈代雄, 等.某矽卡岩铜铁矿综合回收铜铁试验研究[J].有色金属(选矿部分), 2016(6):15-20.
Google Scholar
|
[78] |
SULTAN AHMED KHOSO, LYU F, MENG XS, et al. Selective separation of chalcopyrite and pyrite with a novel and non-hazardous depressant reagent scheme[J]. Chemical Engineering Science, 2019, 209: 115204. doi: 10.1016/j.ces.2019.115204
CrossRef Google Scholar
|
[79] |
方夕辉, 钟常明, 邱廷省.Ca(ClO)2与腐殖酸钠对黄铜矿和黄铁矿浮选的影响[J].中国矿业, 2007(8):48-51.
Google Scholar
|