Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 4
Article Contents

Chen ZHAO, Wanzhong YIN, Yimin ZHU, Zhongming WANG, Qiaobin XIAO. Study on the Mechanism of Floatability Differences between Calcite and Wollastonite[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 82-88. doi: 10.13779/j.cnki.issn1001-0076.2020.04.010
Citation: Chen ZHAO, Wanzhong YIN, Yimin ZHU, Zhongming WANG, Qiaobin XIAO. Study on the Mechanism of Floatability Differences between Calcite and Wollastonite[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 82-88. doi: 10.13779/j.cnki.issn1001-0076.2020.04.010

Study on the Mechanism of Floatability Differences between Calcite and Wollastonite

  • Calcite and wollastonite are often associated with each other in ore. For the same Ca2+ contained in the mineral lattices, some similar surface characteristics and dissolution characteristics are shown in the two minerals. But for the existence of the different anionic groups in their mineral lattices, some differences are shown in the flotations of the two minerals. In this paper, the floatability differences of calcite and wollastonite were studied by the single mineral test when lauryl amine and sodium oleate were used as collectors. The surface potentials and the chief components of calcite and wollastonite in solutions under different pH values were studied by zeta potential analysis and logC-pH analysis of the two minerals. The density of calcium exposure and the density of unsaturated bonds of calcium on the surfaces of calcite and wollastonite were studied by XPS analysis and MS simulations. The results of zeta potential and logC-pH analysis showed that the surface potentials of calcite were more than wollastonite due to the different locating ions of the two minerals; XPS and MS simulation results showed that calcite had more density of calcium exposure and the density of unsaturated bonds of calcium than wollastonite.
  • 加载中
  • [1] 王景阳, 蒋志勇, 童振声.硅灰矿石中的硅灰石、方解石、白云石的物相分析法——钙量法[J].吉林地质, 1982(1):65-73.

    Google Scholar

    [2] 王秀文.硅灰石与方解石、石英的浮选分离(摘要)[J].国外金属矿选矿, 1986(9):26-27.

    Google Scholar

    [3] 毛钜凡, 程卫泉.硅灰石与方解石的浮选分离研究[J].矿冶工程, 1991, 11(2):43-47.

    Google Scholar

    [4] 袁继祖.硅灰石与方解石、石英、长石浮选分离的探讨[C].苏州: 中国硅酸盐协会, 1988.

    Google Scholar

    [5] 孙传尧, 印万忠.硅酸盐矿物浮选原理[M].北京:科学出版社, 2001.

    Google Scholar

    [6] HUANG FUGEN, R SIVAMOHAN. Behaviour of different particle size fractions in the flotation of calcite from wollastonite and microcline[J]. Minerals Engineering, 1990, 3(3-4):257-271. doi: 10.1016/0892-6875(90)90121-Q

    CrossRef Google Scholar

    [7] 高志勇.三种含钙矿物晶体各向异性与浮选行为关系的基础研究[D].长沙: 中南大学, 2013.

    Google Scholar

    [8] HJ MONKHORST, JD PARK. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12):5188-5192. doi: 10.1103/PhysRevB.13.5188

    CrossRef Google Scholar

    [9] 王淀佐, 胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社, 1988.

    Google Scholar

    [10] 胡岳华, 徐竞, 罗超奇, 等.菱锌矿/方解石胺浮选溶液化学研究[J].中南工业大学学报, 1995, 26(5).

    Google Scholar

    [11] 胡岳华, 王淀佐.脂肪酸钠浮选盐类矿物的作用机理研究[J].矿冶工程, 1990(2):20-23.

    Google Scholar

    [12] 赵古田.固液界面双电层结构的理论与实验研究[D].长沙: 中南大学, 2014.

    Google Scholar

    [13] 王淀佐, 胡岳华.氢氧化物表面沉淀在石英浮选中的作用[J].中南矿冶学院学报, 1990, 21(6):248-253.

    Google Scholar

    [14] 王淀佐, 胡岳华.金属离子在氧化物矿物/水界面的吸附及浮选活化机理[J].中南矿冶学院学报, 1987, 18(5):501-508.

    Google Scholar

    [15] TA CLARKE, EN RIZKALLA. X-ray photoelectron spectroscopy of some silicates[J]. Chemical Physics Letters, 1976, 37(3):523-526. doi: 10.1016/0009-2614(76)85029-4

    CrossRef Google Scholar

    [16] G HOLLINGER, FJ HIMPSEL. Probing the transition layer at the SiO2-Si interface using core level photoemission[J]. Applied Physics Letters, 1984, 44(1):93-95. doi: 10.1063/1.94565

    CrossRef Google Scholar

    [17] ML MILLER, PW LINTON. X-ray photoelectron spectroscopy of thermally treated silica (SiO2) surfaces[J]. Analytical Chemistry, 1985, 57(12):2314-2319. doi: 10.1021/ac00289a033

    CrossRef Google Scholar

    [18] T SUGAMA, LE KUKACKA, N CARCIELLO, et al. Study of interactions at water-soluble polymer/Ca(OH)2 or gibbsite interfaces by XPS[J]. Cement and Concrete Research, 1989, 19(6):857-867. doi: 10.1016/0008-8846(89)90098-7

    CrossRef Google Scholar

    [19] 韩海生.新型金属配合物捕收剂在钨矿浮选中的应用及其作用机理研究[D].长沙: 中南大学, 2017.

    Google Scholar

    [20] 王力.气流磨制备高长径比硅灰石的技术研究[D].沈阳: 东北大学, 2005.

    Google Scholar

    [21] 杨怡, 孙传敏, 龚夏生.硅灰石粉碎机理的研究[J].成都理工学院学报, 1998, 25(3):443-446.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(1870) PDF downloads(158) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint