Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 4
Article Contents

Rui XU, Xiaolong NAN, Guoqing JIANG, Jinning QIN, Youyu HE, Zuosheng XIONG, Biguang JIANG, Binhai WANG, Qian LI. Research Progress on Bioremediation Mechanism of Antimony Contaminated Soil[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 23-34. doi: 10.13779/j.cnki.issn1001-0076.2020.04.004
Citation: Rui XU, Xiaolong NAN, Guoqing JIANG, Jinning QIN, Youyu HE, Zuosheng XIONG, Biguang JIANG, Binhai WANG, Qian LI. Research Progress on Bioremediation Mechanism of Antimony Contaminated Soil[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 23-34. doi: 10.13779/j.cnki.issn1001-0076.2020.04.004

Research Progress on Bioremediation Mechanism of Antimony Contaminated Soil

More Information
  • Antimony (Sb) is a toxic metalloid. A large amount of Sb has been released into the soil environment as a result of its extensive use and Sb-mining activities, which causes a serious threat to the health of human beings and ecosystems. The microbial technology remediating Sb contaminated soil has been garnered considerable attention due to its environmentally friendly and low-cost. The influence of soil system characteristics on Sb behavior was discussed, especially focusing on the influence of soil physical and chemical properties on Sb migration? and? conversion. Meanwhile, the research progress of the mechanism of microbial remediation of Sb contaminated soil in recent years was reviewed, especially focusing on the microbial oxidation, reduction, adsorption and methylation. In addition, the feasibility of microbial interactions associated with the adsorption of Fe and Mn (hydr) oxides in soil system was analyzed. It can be inferred that such a technology based on Fe and Mn (hydr) oxides may be an effective method for remediation of Sb contaminated soil.
  • 加载中
  • [1] FILELLA M, BELZILE N, CHEN Y W. Antimony in the environment:A review focused on natural waters:I. Occurrence[J]. Earth-Science Reviews, 2002, 57(1-2):125-176. doi: 10.1016/S0012-8252(01)00070-8

    CrossRef Google Scholar

    [2] WILSON S C, LOCKWOOD P V, ASHLEY P M, et al. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic:A critical review[J]. Environmental Pollution, 2010, 158(5):1169-1181. doi: 10.1016/j.envpol.2009.10.045

    CrossRef Google Scholar

    [3] LI J X, WANG Q, OREMLAND R S, et al. Microbial antimony biogeochemistry:Enzymes, regulation, and related metabolic pathways[J]. Applied and Environmental Microbiology, 2016, 82(18):5482-5495. doi: 10.1128/AEM.01375-16

    CrossRef Google Scholar

    [4] MURCIEGO A M, SANCHEZ A G, GONZALEZ M A R, et al. Antimony distribution and mobility in topsoils and plants (cytisus striatus, cistus ladanifer and dittrichia viscosa) from polluted sb-mining areas in extremadura (spain)[J]. Environmental Pollution, 2007, 145(1):15-21.

    Google Scholar

    [5] J, WANG X, GUO X J, et al. A review of removal technology for antimony in aqueous solution[J]. Journal of Environmental Sciences, 2020, 90:189-204. doi: 10.1016/j.jes.2019.12.008

    CrossRef Google Scholar

    [6] SMICHOWSKI P. Antimony in the environment as a global pollutant:A review on analytical methodologies for its determination in atmospheric aerosols[J]. Talanta, 2008, 75(1):2-14. doi: 10.1016/j.talanta.2007.11.005

    CrossRef Google Scholar

    [7] HOCKMANN K, LENZ M, TANDY, et al. Release of antimony from contaminated soil induced by redox changes[J]. Journal of Hazardous Materials, 2014, 275:215-221. doi: 10.1016/j.jhazmat.2014.04.065

    CrossRef Google Scholar

    [8] HE M C, WANG X Q, WU F C, et al. Antimony pollution in china[J]. Science of the Total Environment, 2012, 421:41-50.

    Google Scholar

    [9] GUEMIZA K, MERCIER G, BLAIS J F. Pilot-scale decontamination of small-arms shooting range soil polluted with copper, lead, antimony, and zinc by acid and saline leaching[J]. Journal of Environmental Engineering, 2015, 141(1):1-10.

    Google Scholar

    [10] TSITONAKI A, PETRI B, CRIMI M, et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate:A review[J]. Critical Reviews in Environmental Science and Technology, 2010, 40(1):55-91. doi: 10.1080/10643380802039303

    CrossRef Google Scholar

    [11] BARKER A J, DOUGLAS T A, ILGEN A G, et al. Lead and antimony from bullet weathering in newly constructed target berms:Chemical speciation, mobilization, and remediation strategies[J]. Science of the Total Environment, 2019, 658:558-569. doi: 10.1016/j.scitotenv.2018.12.188

    CrossRef Google Scholar

    [12] HUANG Y Z, ZHANG W Q, ZHAO L J. Silicon enhances resistance to antimony toxicity in the low-silica rice mutant, lsi1[J]. Chemistry & Ecology, 2012, 28(4):341-354.

    Google Scholar

    [13] PEDERSEN K B, JENSEN P E, OTTOSEN L M, et al. The relative influence of electrokinetic remediation design on the removal of As, Cu, Pb and Sb from shooting range soils[J]. Engineering Geology, 2018, 238:52-61. doi: 10.1016/j.enggeo.2018.03.005

    CrossRef Google Scholar

    [14] WANG X L, WANG M H, QUAN S X, et al. Influence of thermal treatment on fixation rate and leaching behavior of heavy metals in soils from a typical e-waste processing site[J]. Journal of Environmental Chemical Engineering, 2016, 4(1):82-88.

    Google Scholar

    [15] FENG R, WEI C, TU S, et al. The uptake and detoxification of antimony by plants:A review[J]. Environmental & Experimental Botany, 2013, 96:28-34.

    Google Scholar

    [16] NGUYEN V K, PARK Y, LEE T. Microbial antimonate reduction with a solid-state electrode as the sole electron donor:A novel approach for antimony bioremediation[J]. Journal of Hazardous Materials, 2019, 377:179-185. doi: 10.1016/j.jhazmat.2019.05.069

    CrossRef Google Scholar

    [17] UNGUREANU G, SANTOS S, BOAVENTURA R, et al. Arsenic and antimony in water and wastewater:Overview of removal techniques with special reference to latest advances in adsorption[J]. Journal of Environmental Management, 2015, 151:326-342.

    Google Scholar

    [18] WANG N N, ZHANG S H, HE M C. Bacterial community profile of contaminated soils in a typical antimony mining site[J]. Environmental Science and Pollution Research, 2018, 25(1):141-152. doi: 10.1007/s11356-016-8159-y

    CrossRef Google Scholar

    [19] LUO J M, BAI Y H, LIANG J S, et al. Metagenomic approach reveals variation of microbes with arsenic and antimony metabolism genes from highly contaminated soil[J]. Plos One, 2014, 9(10):1-9.

    Google Scholar

    [20] MAJZLAN J, LALINSKA B, CHOVAN M, et al. A mineralogical, geochemical, and microbiogical assessment of the antimony- and arsenic-rich neutral mine drainage tailings near pezinok, slovakia[J]. American Mineralogist, 2011, 96(1):1-13.

    Google Scholar

    [21] XI J H, HE M C, LIN C Y. Adsorption of antimony(Ⅲ) and antimony(Ⅴ) on bentonite:Kinetics, thermodynamics and anion competition[J]. Microchemical Journal, 2011, 97(1):85-91. doi: 10.1016/j.microc.2010.05.017

    CrossRef Google Scholar

    [22] KONG L H, HU X Y, HE M C. Mechanisms of Sb(Ⅲ) oxidation by pyrite-induced hydroxyl radicals and hydrogen peroxide[J]. Environmental Science & Technology, 2015, 49(6):3499-3505.

    Google Scholar

    [23] HERATH I, VITHANAGE M, BUNDSCHUH J. Antimony as a global dilemma:Geochemistry, mobility, fate and transport[J]. Environmental Pollution, 2017, 223:545-559. doi: 10.1016/j.envpol.2017.01.057

    CrossRef Google Scholar

    [24] CHEN Y W, DENG T L, FILELLA M, et al. Distribution and early diagenesis of antimony species in sediments and porewaters of freshwater lakes[J]. Environmental Science & Technology, 2003, 37(6):1163-1168.

    Google Scholar

    [25] ARSIC M, TEASDALE P R, WELSH D T, et al. Diffusive gradients in thin films reveals differences in antimony and arsenic mobility in a contaminated wetland sediment during an oxic-anoxic transition[J]. Environmental Science & Technology, 2018, 52(3):1118-1127.

    Google Scholar

    [26] MITSUNOBU S, HARADA T, TAKAHASHI Y. Comparison of antimony behavior with that of arsenic under various soil redox conditions[J]. Environmental Science & Technology, 2006, 40(23):7270-7276.

    Google Scholar

    [27] STEELY S, AMARASIRIWARDENA D, XING B S. An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils[J]. Environmental Pollution, 2007, 148(2):590-598. doi: 10.1016/j.envpol.2006.11.031

    CrossRef Google Scholar

    [28] KARIMIAN N, BURTON E D, JOHNSTON S G. Antimony speciation and mobility during Fe(Ⅱ)-induced transformation of humic acid-antimony(Ⅴ)-iron(Ⅲ) coprecipitates[J]. Environmental Pollution, 2019, 254:1-10.

    Google Scholar

    [29] NAKAMARU Y, TAGAMI K, UCHIDA S. Antimony mobility in japanese agricultural soils and the factors affecting antimony sorption behavior[J]. Environmental Pollution, 2006, 141(2):321-326. doi: 10.1016/j.envpol.2005.08.040

    CrossRef Google Scholar

    [30] FAN J X, WANG Y J, FAN T T, et al. Photo-induced oxidation of Sb(Ⅲ) on goethite[J]. Chemosphere, 2014, 95:295-300. doi: 10.1016/j.chemosphere.2013.08.094

    CrossRef Google Scholar

    [31] TIGHE M, LOCKWOOD P. Importance of noncrystalline hydroxide phases in sequential extractions to fractionate antimony in acid soils[J]. Communications in Soil Science & Plant Analysis, 2007, 38(11-12):1487-1501.

    Google Scholar

    [32] AMBE S. Adsorption-kinetics of antimony(Ⅴ) ions onto alpha-Fe2O3 surfaces from an aqueous-solution[J]. Langmuir, 1987, 3(4):489-493. doi: 10.1021/la00076a009

    CrossRef Google Scholar

    [33] WANG S L, MULLIGAN C N. Effect of natural organic matter on arsenic mobilization from mine tailings[J]. Journal of Hazardous Materials, 2009, 168(2-3):721-726. doi: 10.1016/j.jhazmat.2009.02.088

    CrossRef Google Scholar

    [34] THANABALASINGAM P, PICKERING W F. Specific sorption of antimony(Ⅲ) by the hydrous oxides of Mn, Fe, and Al[J]. Water Air and Soil Pollution, 1990, 49(1-2):175-185. doi: 10.1007/BF00279519

    CrossRef Google Scholar

    [35] ZHOU S, SATO T, OTAKE T. Dissolved silica effects on adsorption and co-precipitation of Sb(Ⅲ) and Sb(Ⅴ) with ferrihydrite[J]. Minerals, 2018, 8(3):1-12.

    Google Scholar

    [36] QI P F, PICHLER T. Competitive adsorption of As(Ⅲ), As(Ⅴ), Sb(Ⅲ) and Sb(Ⅴ) onto ferrihydrite in multi-component systems:Implications for mobility and distribution[J]. Journal of Hazardous Materials, 2017, 330:142-148. doi: 10.1016/j.jhazmat.2017.02.016

    CrossRef Google Scholar

    [37] GUO X J, WU Z J, HE M C, et al. Adsorption of antimony onto iron oxyhydroxides:Adsorption behavior and surface structure[J]. Journal of Hazardous Materials, 2014, 276:339-345. doi: 10.1016/j.jhazmat.2014.05.025

    CrossRef Google Scholar

    [38] MITSUNOBU S, TAKAHASHI Y, TERADA Y, et al. Antimony(Ⅴ) incorporation into synthetic ferrihydrite, goethite, and natural iron oxyhydroxides[J]. Environmental Science & Technology, 2010, 44(10):3712-3718.

    Google Scholar

    [39] SUN Q, LIU C, ALVES M E, et al. The oxidation and sorption mechanism of Sb on delta-MnO2[J]. Chemical Engineering Journal, 2018, 342:429-437. doi: 10.1016/j.cej.2018.02.091

    CrossRef Google Scholar

    [40] ILGEN A G, TRAINOR T P. Sb(Ⅲ) and Sb(Ⅴ) sorption onto Al-rich phases:Hydrous Al oxide and the clay minerals kaolinite KGa-1b and oxidized and reduced nontronite NAu-1[J]. Environmental Science & Technology, 2012, 46(2):843-851.

    Google Scholar

    [41] DU H H, TAO J, YANG R J, et al. Bacteria affect Sb(Ⅲ, Ⅴ) adsorption and oxidation on birnessite[J]. Journal of Soils and Sediments, 2020, 20:2418-2425. doi: 10.1007/s11368-020-02607-1

    CrossRef Google Scholar

    [42] BELZILE N, CHEN Y W, WANG Z J. Oxidation of antimony (Ⅲ) by amorphous iron and manganese oxyhydroxides[J]. Chemical Geology, 2001, 174(4):379-387. doi: 10.1016/S0009-2541(00)00287-4

    CrossRef Google Scholar

    [43] BAGHERIFAM S, LAKZIAN A, FOTOVAT A, et al. In situ stabilization of as and sb with naturally occurring Mn, Al and Fe oxides in a calcareous soil:Bioaccessibility, bioavailability and speciation studies[J]. Journal of Hazardous Materials, 2014, 273:247-252. doi: 10.1016/j.jhazmat.2014.03.054

    CrossRef Google Scholar

    [44] XU W, WANG H, LIU R, et al. The mechanism of antimony(Ⅲ) removal and its reactions on the surfaces of Fe-Mn binary oxide[J]. Journal of Colloid & Interface Science, 2011, 363(1):320-326.

    Google Scholar

    [45] FU L, SHOZUGAWA K, MATSUO M. Oxidation of antimony (Ⅲ) in soil by manganese (Ⅳ) oxide using x-ray absorption fine structure[J]. Journal of Environmental Sciences, 2018, 73:31-37. doi: 10.1016/j.jes.2018.01.003

    CrossRef Google Scholar

    [46] RABBI S M F, DANIEL H, LOCKWOOD P V, et al. Physical soil architectural traits are functionally linked to carbon decomposition and bacterial diversity[J]. Scientific Reports, 2016, 6:1-9. doi: 10.1038/s41598-016-0001-8

    CrossRef Google Scholar

    [47] XU Y L, SESHADRI B, BOLAN N, et al. Microbial functional diversity and carbon use feedback in soils as affected by heavy metals[J]. Environment International, 2019, 125:478-488. doi: 10.1016/j.envint.2019.01.071

    CrossRef Google Scholar

    [48] HE M C, WANG N N, LONG X J, et al. Antimony speciation in the environment:Recent advances in understanding the biogeochemical processes and ecological effects[J]. Journal of Environmental Sciences, 2019, 75:14-39. doi: 10.1016/j.jes.2018.05.023

    CrossRef Google Scholar

    [49] BROHON B, DELOLME C, GOURDON R. Complementarity of bioassays and microbial activity measurements for the evaluation of hydrocarbon-contaminated soils quality[J]. Soil Biology & Biochemistry, 2001, 33(7-8):883-891.

    Google Scholar

    [50] KARACA A, NASEBY D C, LYNCH J M. Effect of cadmium contamination with sewage sludge and phosphate fertiliser amendments on soil enzyme activities, microbial structure and available cadmium[J]. Biology and Fertility of Soils, 2002, 35(6):428-434. doi: 10.1007/s00374-002-0490-4

    CrossRef Google Scholar

    [51] AN Y J, KIM M. Effect of antimony on the microbial growth and the activities of soil enzymes[J]. Chemosphere, 2009, 74(5):654-659. doi: 10.1016/j.chemosphere.2008.10.023

    CrossRef Google Scholar

    [52] SHOTYK W, KRACHLER M, CHEN B. Anthropogenic impacts on the biogeochemistry and cycling of antimony[M]. Sigel A, Sigel H, Sigel RKO (eds). Metal ions in biological systems, vol 44:Biogeochemistry, availability, and transport of metals in the environment. London:Taylor & Francis Ltd, 2005:171-203.

    Google Scholar

    [53] ASAKURA K, SATOH H, CHIBA M, et al. Genotoxicity studies of heavy metals:Lead, bismuth, indium, silver and antimony[J]. Journal of Occupational Health, 2009, 51(6):498-512. doi: 10.1539/joh.L9080

    CrossRef Google Scholar

    [54] YANG X Z, SHI Z, YUAN M Y, et al. Adsorption of trivalent antimony from aqueous solution using graphene oxide:Kinetic and thermodynamic studies[J]. Journal of Chemical and Engineering Data, 2015, 60(3):806-813.

    Google Scholar

    [55] OBIAKOR M O, WILSON S C, TIGHE M, et al. Antimony causes mortality and induces mutagenesis in the soil functional bacterium Azospirillum brasilense sp7[J]. Water Air and Soil Pollution, 2019, 230(8):1-14.

    Google Scholar

    [56] MENG Y L, LIU Z J, ROSEN B P. As(Ⅲ) and Sb(Ⅲ) uptake by GIpf and efflux by ArsB in escherichia coli[J]. Journal of Biological Chemistry, 2004, 279(18):18334-18341. doi: 10.1074/jbc.M400037200

    CrossRef Google Scholar

    [57] FILELLA M, BELZILE N, LETT M C. Antimony in the environment:A review focused on natural waters. Ⅲ. Microbiota relevant interactions[J]. Earth-Science Reviews, 2007, 80(3-4):195-217. doi: 10.1016/j.earscirev.2006.09.003

    CrossRef Google Scholar

    [58] MURATA T, KANAO-KOSHIKAWA M, TAKAMATSU T. Effects of Pb, Cu, Sb, in and ag contamination on the proliferation of soil bacterial colonies, soil dehydrogenase activity, and phospholipid fatty acid profiles of soil microbial communities[J]. Water Air and Soil Pollution, 2005, 164(1-4):103-118. doi: 10.1007/s11270-005-2254-x

    CrossRef Google Scholar

    [59] WANG Q S, HE M C, WANG Y. Influence of combined pollution of antimony and arsenic on culturable soil microbial populations and enzyme activities[J]. Ecotoxicology, 2011, 20(1):9-19.

    Google Scholar

    [60] DIQUATTRO S, GARAU G, MANGIA N P, et al. Mobility and potential bioavailability of antimony in contaminated soils:Short-term impact on microbial community and soil biochemical functioning[J]. Ecotoxicology and Environmental Safety, 2020, 196:1-10.

    Google Scholar

    [61] KASSA-LAOUAR M, MECHAKRA A, RODRIGUE A, et al. Antioxidative enzyme responses to antimony stress of serratia marcescens - an endophytic bacteria of Hedysarum pallidum roots[J]. Polish Journal of Environmental Studies, 2020, 29(1):141-152.

    Google Scholar

    [62] WYSOCKI R, CHERY C C, WAWRZYCKA D, et al. The glycerol channel fps1p mediates the uptake of arsenite and antimonite in saccharomyces cerevisiae[J]. Molecular Microbiology, 2001, 40(6):1391-1401. doi: 10.1046/j.1365-2958.2001.02485.x

    CrossRef Google Scholar

    [63] TOWNSHEND A. Metals and their compounds in the environment. Occurrence, analysis and biological relevance[J]. Analytica Chimica Acta, 1993, 271(2):331-332.

    Google Scholar

    [64] WANG G J, KENNEDY S P, FASILUDEEN S, et al. Arsenic resistance in halobacterium sp strain nrc-1 examined by using an improved gene knockout system[J]. Journal of Bacteriology, 2004, 186(10):3187-3194. doi: 10.1128/JB.186.10.3187-3194.2004

    CrossRef Google Scholar

    [65] BRANCO R, CHUNG A P, MORAIS P V. Sequencing and expression of two arsenic resistance operons with different functions in the highly arsenic-resistant strain Ochrobactrum tritici SCⅡ24T[J]. Bmc Microbiology, 2008, 8:1-12. doi: 10.1186/1471-2180-8-1

    CrossRef Google Scholar

    [66] LI J, WANG Q, ZHANG S Z, et al. Phylogenetic and genome analyses of antimony-oxidizing bacteria isolated from antimony mined soil[J]. International Biodeterioration & Biodegradation, 2013, 76:76-80.

    Google Scholar

    [67] ROSEN B R, LIU Z J. Transport pathways for arsenic and selenium:A mini review[J]. Environment International, 2009, 35(3):512-515. doi: 10.1016/j.envint.2008.07.023

    CrossRef Google Scholar

    [68] BUTCHER B G, DEANE S M, RAWLINGS D E. The chromosomal arsenic resistance genes of thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to escherichia coli[J]. Applied and Environmental Microbiology, 2000, 66(5):1826-1833. doi: 10.1128/AEM.66.5.1826-1833.2000

    CrossRef Google Scholar

    [69] ACHOUR A R, BAUDA P, BILLARD P. Diversity of arsenite transporter genes from arsenic-resistant soil bacteria[J]. Research in Microbiology, 2007, 158(2):128-137. doi: 10.1016/j.resmic.2006.11.006

    CrossRef Google Scholar

    [70] ROSEN B P. Families of arsenic transporters[J]. Trends in Microbiology, 1999, 7(5):207-212. doi: 10.1016/S0966-842X(99)01494-8

    CrossRef Google Scholar

    [71] KANG Y S, SHI Z J, BOTHNER B, et al. Involvement of the acr3 and dcta anti-porters in arsenite oxidation in Agrobacterium Tumefaciens 5A[J]. Environmental Microbiology, 2015, 17(6):1950-1962. doi: 10.1111/1462-2920.12468

    CrossRef Google Scholar

    [72] MANZANO J I, GARCIA-HERNANDEZ R, CASTANYS S, et al. A new abc half-transporter in leishmania major is involved in resistance to antimony[J]. Antimicrobial Agents and Chemotherapy, 2013, 57(8):3719-3730. doi: 10.1128/AAC.00211-13

    CrossRef Google Scholar

    [73] GHOSH M, SHEN J, ROSEN B P. Pathways of As(Ⅲ) detoxification in Saccharomyces cerevisiae[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(9):5001-5006. doi: 10.1073/pnas.96.9.5001

    CrossRef Google Scholar

    [74] GOURBAL B, SONUC N, BHATTACHARJEE H, et al. Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin[J]. Journal of Biological Chemistry, 2004, 279(30):31010-31017. doi: 10.1074/jbc.M403959200

    CrossRef Google Scholar

    [75] MARQUIS N, GOURBAL B, ROSEN B P, et al. Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania[J]. Molecular Microbiology, 2005, 57(6):1690-1699. doi: 10.1111/j.1365-2958.2005.04782.x

    CrossRef Google Scholar

    [76] BROCHU C, WANG J Y, ROY G, et al. Antimony uptake systems in the protozoan parasite Leishmania and accumulation differences in antimony-resistant parasites[J]. Antimicrobial Agents and Chemotherapy, 2003, 47(10):3073-3079. doi: 10.1128/AAC.47.10.3073-3079.2003

    CrossRef Google Scholar

    [77] NGUYEN V K, CHOI W, YU J, et al. Microbial oxidation of antimonite and arsenite by bacteria isolated from antimony-contaminated soils[J]. International Journal of Hydrogen Energy, 2017, 42(45):27832-27842. doi: 10.1016/j.ijhydene.2017.08.056

    CrossRef Google Scholar

    [78] LI J X, ZHANG Y X, ZHENG S L, et al. Anaerobic bacterial immobilization and removal of toxic Sb(Ⅲ) coupled with Fe(Ⅱ)/Sb(Ⅲ) oxidation and denitrification[J]. Frontiers in Microbiology, 2019, 10:1-11. doi: 10.3389/fmicb.2019.00001

    CrossRef Google Scholar

    [79] SHI Z J, CAO Z, QIN D, et al. Correlation models between environmental factors and bacterial resistance to antimony and copper[J]. Plos One, 2013, 8(10):1-11.

    Google Scholar

    [80] LI P Z, LIN C Y, CHENG H G, et al. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern china[J]. Ecotoxicology and Environmental Safety, 2015, 113:391-399. doi: 10.1016/j.ecoenv.2014.12.025

    CrossRef Google Scholar

    [81] LI J X, YANG B R, SHI M M, et al. Effects upon metabolic pathways and energy production by Sb(Ⅲ) and As(Ⅲ)/Sb(Ⅲ)-oxidase gene aioa in Agrobacterium tumefaciens GW4[J]. Plos One, 2017, 12(2):1-19.

    Google Scholar

    [82] WANG D, ZHU F Q, WANG Q, et al. Disrupting ROS-protection mechanism allows hydrogen peroxide to accumulate and oxidize Sb(Ⅲ) to Sb(Ⅴ) in Pseudomonas stutzeri TS44[J]. Bmc Microbiology, 2016, 16:1-11. doi: 10.1186/s12866-015-0617-z

    CrossRef Google Scholar

    [83] LEHR C R, KASHYAP D R, MCDERMOTT T R. New insights into microbial oxidation of antimony and arsenic[J]. Applied and Environmental Microbiology, 2007, 73(7):2386-2389. doi: 10.1128/AEM.02789-06

    CrossRef Google Scholar

    [84] LI J X, YANG B R, SHI M M, et al. Abiotic and biotic factors responsible for antimonite oxidation in Agrobacterium tumefaciens GW4[J]. Scientific Reports, 2017, 7:1-11. doi: 10.1038/s41598-016-0028-x

    CrossRef Google Scholar

    [85] LIU H, ZHUANG W, ZHANG S, et al. Global regulator iscr positively contributes to antimonite resistance and oxidation in Comamonas testosteroni S44[J]. Frontiers in molecular biosciences, 2015, 2(70):1-12.

    Google Scholar

    [86] TERRY L R, KULP T R, WIATROWSKI H, et al. Microbiological oxidation of antimony(Ⅲ) with oxygen or nitrate by bacteria isolated from contaminated mine sediments[J]. Applied and Environmental Microbiology, 2015, 81(24):8478-8488. doi: 10.1128/AEM.01970-15

    CrossRef Google Scholar

    [87] BAI Y H, JEFFERSON W A, LIANG J S, et al. Antimony oxidation and adsorption by in-situ formed biogenic Mn oxide and Fe-Mn oxides[J]. Journal of Environmental Sciences, 2017, 54:126-134. doi: 10.1016/j.jes.2016.05.026

    CrossRef Google Scholar

    [88] LI J X, WANG Q, LI M S, et al. Proteomics and genetics for identification of a bacterial antimonite oxidase in Agrobacterium tumefaciens[J]. Environmental Science & Technology, 2015, 49(10):5980-5989.

    Google Scholar

    [89] FILELLA M, BELZILE N, CHEN Y W. Antimony in the environment:A review focused on natural waters Ⅱ. Relevant solution chemistry[J]. Earth-Science Reviews, 2002, 59(1-4):265-285. doi: 10.1016/S0012-8252(02)00089-2

    CrossRef Google Scholar

    [90] KIRSCH R, SCHEINOST A C, ROSSBERG A, et al. Reduction of antimony by nano-particulate magnetite and mackinawite[J]. Mineralogical Magazine, 2008, 72(1):185-189. doi: 10.1180/minmag.2008.072.1.185

    CrossRef Google Scholar

    [91] MITSUNOBU S, TAKAHASHI Y, SAKAI Y. Abiotic reduction of antimony(Ⅴ) by green rust (Fe4(Ⅱ)Fe2(Ⅲ)(OH)12SO4·3H2O)[J]. Chemosphere, 2008, 70(5):942-947. doi: 10.1016/j.chemosphere.2007.07.021

    CrossRef Google Scholar

    [92] ABIN C A, HOLLIBAUGH J T. Dissimilatory antimonate reduction and production of antimony trioxide microcrystals by a novel microorganism[J]. Environmental Science & Technology, 2014, 48(1):681-688.

    Google Scholar

    [93] KULP T R, MILLER L G, BRAIOTTA F, et al. Microbiological reduction of Sb(Ⅴ) in anoxic freshwater sediments[J]. Environmental Science & Technology, 2014, 48(1):218-226.

    Google Scholar

    [94] LEUZ A K, MONCH H, JOHNSON C A. Sorption of Sb(Ⅲ) and Sb(Ⅴ) to goethite:Influence on Sb(Ⅲ) oxidation and mobilization[J]. Environmental Science & Technology, 2006, 40(23):7277-7282.

    Google Scholar

    [95] HOCKMANN K, LENZ M, TANDY S, et al. Release of antimony from contaminated soil induced by redox changes[J]. Journal of Hazardous Materials, 2014, 275(30):215-221.

    Google Scholar

    [96] LAI C Y, WEN L L, ZHANG Y, et al. Autotrophic antimonate bio-reduction using hydrogen as the electron donor[J]. Water Research, 2016, 88:467-474. doi: 10.1016/j.watres.2015.10.042

    CrossRef Google Scholar

    [97] WANG H W, CHEN F L, MU S Y, et al. Removal of antimony (Sb(Ⅴ)) from sb mine drainage:Biological sulfate reduction and sulfide oxidation-precipitation[J]. Bioresource Technology, 2013, 146:799-802. doi: 10.1016/j.biortech.2013.08.002

    CrossRef Google Scholar

    [98] NGUYEN V K, LEE J U. Isolation and characterization of antimony-reducing bacteria from sediments collected in the vicinity of an antimony factory[J]. Geomicrobiology Journal, 2014, 31(10):855-861. doi: 10.1080/01490451.2014.901440

    CrossRef Google Scholar

    [99] ABIN C A, HOLLIBAUGH J T. Transcriptional response of the obligate anaerobe Desulfuribacillus stibiiarsenatis MLFW-2T to growth on antimonate and other terminal electron acceptors[J]. Environmental Microbiology, 2019, 21(2):618-630.

    Google Scholar

    [100] Lv LV P L, SHI L D, WANG Z, et al. Methane oxidation coupled to perchlorate reduction in a membrane biofilm batch reactor[J]. Science of the Total Environment, 2019, 667:9-15. doi: 10.1016/j.scitotenv.2019.02.330

    CrossRef Google Scholar

    [101] SHI L D, WANG M, HAN Y L, et al. Multi-omics reveal various potential antimonate reductases from phylogenetically diverse microorganisms[J]. Applied Microbiology and Biotechnology, 2019, 103(21-22):9119-9129. doi: 10.1007/s00253-019-10111-x

    CrossRef Google Scholar

    [102] SCHEINOST A C, ROSSBERG A, VANTELON D, et al. Quantitative antimony speciation in shooting-range soils by exafs spectroscopy[J]. Geochimica Et Cosmochimica Acta, 2006, 70(13):3299-3312. doi: 10.1016/j.gca.2006.03.020

    CrossRef Google Scholar

    [103] CUI X D, WANG Y J, HOCKRNANN K, et al. Effect of iron plaque on antimony uptake by rice (oryza sativa l.)[J]. Environmental Pollution, 2015, 204:133-140.

    Google Scholar

    [104] KARIMIAN N, JOHNSTON S G, BURTON E D. Antimony and arsenic behavior during Fe(Ⅱ)-induced transformation of jarosite[J]. Environmental Science & Technology, 2017, 51(8):4259-4268.

    Google Scholar

    [105] KARIMIAN N, JOHNSTON S G, BURTON E D. Antimony and arsenic partitioning during Fe2+-induced transformation of jarosite under acidic conditions[J]. Chemosphere, 2018, 195:515-523. doi: 10.1016/j.chemosphere.2017.12.106

    CrossRef Google Scholar

    [106] HOCKMANN K, TANDY S, LENZ M, ET AL, et al. Antimony leaching from contaminated soil under manganese- and iron-reducing conditions:Column experiments[J]. Environmental Chemistry, 2014, 11(6):624-631. doi: 10.1071/EN14123

    CrossRef Google Scholar

    [107] BURTON E D, HOCKMANN K, KARIMIAN N, et al. Antimony mobility in reducing environments:The effect of microbial iron(Ⅲ)-reduction and associated secondary mineralization[J]. Geochimica Et Cosmochimica Acta, 2019, 245:278-289. doi: 10.1016/j.gca.2018.11.005

    CrossRef Google Scholar

    [108] LEI M, TAO J, YANG R J, et al. Binding of Sb(Ⅲ) by Sb-tolerant Bacillus cereus cell and cell-goethite composite:Implications for sb mobility and fate in soils and sediments[J]. Journal of Soils and Sediments, 2019, 19(6):2850-2858. doi: 10.1007/s11368-019-02272-z

    CrossRef Google Scholar

    [109] ANAYURT R A, SARI A, TUZEN M. Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(Ⅱ) and Vd(Ⅱ) from aqueous solution by macrofungus (lactarius scrobiculatus) biomass[J]. Chemical Engineering Journal, 2009, 151(1-3):255-261. doi: 10.1016/j.cej.2009.03.002

    CrossRef Google Scholar

    [110] DAS S K, DAS A R, GUHA A K. A study on the adsorption mechanism of mercury on aspergillus versicolor biomass[J]. Environmental Science & Technology, 2007, 41(24):8281-8287.

    Google Scholar

    [111] SUN F H, WU F C, LIAO H Q, et al. Biosorption of antimony(Ⅴ) by freshwater cyanobacteria microcystis biomass:Chemical modification and biosorption mechanisms[J]. Chemical Engineering Journal, 2011, 171(3):1082-1090.

    Google Scholar

    [112] GU J H, SUNAHARA G, DURAN R, et al. Sb(Ⅲ)-resistance mechanisms of a novel bacterium from non-ferrous metal tailings[J]. Ecotoxicology and Environmental Safety, 2019, 186:1-9.

    Google Scholar

    [113] ZHANG D Y, PAN X L, ZHAO L, et al. Biosorption of antimony (Sb) by the Cyanobacterium synechocystis sp[J]. Polish Journal of Environmental Studies, 2011, 20(5):1353-1358.

    Google Scholar

    [114] ZHANG D Y, PAN X L, MU G J. Biosorption of Sb(Ⅲ) to exopolymers from Cyanobacterium synechocystis sp.:A fluorescence and ftir study[J]. Polish Journal of Environmental Studies, 2012, 21(5):1497-1503.

    Google Scholar

    [115] CAI Y, LI X P, LIU D Y, et al. A novel Pb-resistant bacillus subtilis bacterium isolate for co-biosorption of hazardous Sb(Ⅲ) and Pb(Ⅱ):Thermodynamics and application strategy[J]. International Journal of Environmental Research and Public Health, 2018, 15(4):1-18.

    Google Scholar

    [116] WU F C, SUN F H, WU S, et al. Removal of antimony(Ⅲ) from aqueous solution by freshwater cyanobacteria Microcystis biomass[J]. Chemical Engineering Journal, 2012, 183:172-179. doi: 10.1016/j.cej.2011.12.050

    CrossRef Google Scholar

    [117] UNGUREANU G, FILOTE C, SANTOS S C R, et al. Antimony oxyanions uptake by green marine macroalgae[J]. Journal of Environmental Chemical Engineering, 2016, 4(3):3441-3450.

    Google Scholar

    [118] UNGUREANU G, SANTOS S C R, VOLF I, et al. Biosorption of antimony oxyanions by brown seaweeds:Batch and column studies[J]. Journal of Environmental Chemical Engineering, 2017, 5(4):3463-3471.

    Google Scholar

    [119] WU H Y, CHEN W L, RONG X M, et al. Adhesion of Pseudomonas putida onto kaolinite at different growth phases[J]. Chemical Geology, 2014, 390:1-8. doi: 10.1016/j.chemgeo.2014.10.008

    CrossRef Google Scholar

    [120] MOON E M, PEACOCK C L. Adsorption of Cu(Ⅱ) to ferrihydrite and ferrihydrite-bacteria composites:Importance of the carboxyl group for Cu mobility in natural environments[J]. Geochimica Et Cosmochimica Acta, 2012, 92:203-219. doi: 10.1016/j.gca.2012.06.012

    CrossRef Google Scholar

    [121] DU H H, LIN Y P, CHEN W L, et al. Copper adsorption on composites of goethite, cells of Pseudomonas putida and humic acid[J]. European Journal of Soil Science, 2017, 68(4):514-523.

    Google Scholar

    [122] FRANZBLAU R E, DAUGHNEY C J, SWEDLUND P J, et al. Cu(Ⅱ) removal by anoxybacillus flavithermus-iron oxide composites during the addition of Fe(Ⅱ)(aq)[J]. Geochimica Et Cosmochimica Acta, 2016, 172:139-158. doi: 10.1016/j.gca.2015.09.031

    CrossRef Google Scholar

    [123] DOPP E, HARTMANN L M, FLOREA A M, et al. Environmental distribution, analysis, and toxicity of organometal(loid) compounds[J]. Critical Reviews in Toxicology, 2004, 34(3):301-333. doi: 10.1080/10408440490270160

    CrossRef Google Scholar

    [124] FILELLA M. Alkyl derivatives of antimony in the environment[J]. Metal ions in life sciences, 2010, 7:267-301.

    Google Scholar

    [125] BURRELL R E, CORKE C T, GOEL R G. Fungitoxicity of organoantimony and organobismuth compounds[J]. Journal of Agricultural and Food Chemistry, 1983, 31(1):85-88. doi: 10.1021/jf00115a023

    CrossRef Google Scholar

    [126] ANDREWES P, KITCHIN K T, WALLACE K. Dimethylarsine and trimethylarsine are potent genotoxins in vitro[J]. Chemical Research in Toxicology, 2003, 16(8):994-1003. doi: 10.1021/tx034063h

    CrossRef Google Scholar

    [127] DOPP E, HARTMANN L M, FLOREA A M, et al. Trimethylantimony dichloride causes genotoxic effects in chinese hamster ovary cells after forced uptake[J]. Toxicology in Vitro, 2006, 20(6):1060-1065. doi: 10.1016/j.tiv.2006.01.018

    CrossRef Google Scholar

    [128] GEBEL T. Arsenic and antimony:Comparative approach on mechanistic toxicology[J]. Chemico-Biological Interactions, 1997, 107(3):131-144. doi: 10.1016/S0009-2797(97)00087-2

    CrossRef Google Scholar

    [129] JENKINS R O, FORSTER S N, CRAIG P J. Formation of methylantimony species by an aerobic prokaryote:Flavobacterium sp[J]. Archives of Microbiology, 2002, 178(4):274-278. doi: 10.1007/s00203-002-0456-9

    CrossRef Google Scholar

    [130] MICHALKE K, SCHMIDT A, HUBER B, et al. Role of intestinal microbiota in transformation of bismuth and other metals and metalloids into volatile methyl and hydride derivatives in humans and mice[J]. Applied and Environmental Microbiology, 2008, 74(10):3069-3075. doi: 10.1128/AEM.02933-07

    CrossRef Google Scholar

    [131] GURLEYUK H, VANFLEETSTALDER V, CHASTEEN T G. Confirmation of the biomethylation of antimony compounds[J]. Applied Organometallic Chemistry, 1997, 11(6):471-483. doi: 10.1002/(SICI)1099-0739(199706)11:6<471::AID-AOC590>3.0.CO;2-H

    CrossRef Google Scholar

    [132] ANDREWES P, CULLEN W R, POLISHCHUK E. Antimony biomethylation by Scopulariopsis brevicaulis:Characterization of intermediates and the methyl donor[J]. Chemosphere, 2000, 41(11):1717-1725. doi: 10.1016/S0045-6535(00)00063-1

    CrossRef Google Scholar

    [133] ANDREWES P, CULLEN W R, POLISHCHUK E, et al. Antimony biomethylation by the wood rotting fungus Phaeolus schweinitzii[J]. Applied Organometallic Chemistry, 2001, 15(6):473-480. doi: 10.1002/aoc.131

    CrossRef Google Scholar

    [134] JENKINS R O, CRAIG P J, GOESSLER W, et al. Biomethylation of inorganic antimony compounds by an aerobic fungus:Scopulariopsis brevicaulis[J]. Environmental Science & Technology, 1998, 32(7):882-885.

    Google Scholar

    [135] CRAIG P J, JENKINS R O, DEWICK R, et al. Trimethylantimony generation by Scopulariopsis brevicaulis during aerobic growth[J]. Science of the Total Environment, 1999, 229(1-2):83-88. doi: 10.1016/S0048-9697(99)00063-7

    CrossRef Google Scholar

    [136] WEHMEIER S, FELDMANN J. Investigation into antimony mobility in sewage sludge fermentation[J]. Journal of Environmental Monitoring, 2005, 7(12):1194-1199. doi: 10.1039/b509538g

    CrossRef Google Scholar

    [137] HARTMANN L M, CRAIG P J, JENKINS R O. Influence of arsenic on antimony methylation by the aerobic yeast Cryptococcus humicolus[J]. Archives of Microbiology, 2003, 180(5):347-352. doi: 10.1007/s00203-003-0600-1

    CrossRef Google Scholar

    [138] ANDREWES P, CULLEN W R, FELDMANN J, et al. The production of methylated organoantimony compounds by Scopulariopsis brevicaulis[J]. Applied Organometallic Chemistry, 1998, 12(12):827-842. doi: 10.1002/(SICI)1099-0739(199812)12:12<827::AID-AOC797>3.0.CO;2-O

    CrossRef Google Scholar

    [139] SMITH L M, MAHER W A, CRAIG P J, et al. Speciation of volatile antimony compounds in culture headspace gases of Cryptococcus humicolus using solid phase microextraction and gas chromatography-mass spectrometry[J]. Applied Organometallic Chemistry, 2002, 16(6):287-293. doi: 10.1002/aoc.303

    CrossRef Google Scholar

    [140] DUESTER L, DIAZ-BONE R A, KOSTERS J, et al. Methylated arsenic, antimony and tin species in soils[J]. Journal of Environmental Monitoring, 2005, 7(12):1186-1193. doi: 10.1039/b508206d

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(1813) PDF downloads(31) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint