Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 4
Article Contents

hao SHI, Jingmin HU, Xin CHEN, Anan PENG. Research Progress on Microbial Remediation Technology of Cadmium Contaminated Mine Soil[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 17-22. doi: 10.13779/j.cnki.issn1001-0076.2020.04.003
Citation: hao SHI, Jingmin HU, Xin CHEN, Anan PENG. Research Progress on Microbial Remediation Technology of Cadmium Contaminated Mine Soil[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 17-22. doi: 10.13779/j.cnki.issn1001-0076.2020.04.003

Research Progress on Microbial Remediation Technology of Cadmium Contaminated Mine Soil

More Information
  • Cadmium contamination in agricultural soils caused by mining is one of the urgent environmental problems in China. Microbial remediation has shown good potential due to its environmental compatibility and low cost. This review summarizes the microbial mechanism of cadmium mobilization and immobilization. The effects of microbial-phytoremediation and the performances of microbial agents mixed with soil amendments on cadmium contamination remediation in recent years were reviewed, and the potential research directions were discussed.
  • 加载中
  • [1] 全国土壤污染状况调查公报[EB/OL].(2014-04-17). http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm.

    Google Scholar

    [2] LI Z, MA Z, VAN DER KUIJP TJ, et al. A review of soil heavy metal pollution from mines in China:pollution and health risk assessment[J]. Science of the Total Environment 2014, 468-469:843-853.

    Google Scholar

    [3] 陈思奇, 杨雨薇, 杨其亮, 等.国内土壤重金属镉污染修复技术应用现状与展望[J].安徽化工, 2020, 46(1):8-12.

    Google Scholar

    [4] 李晓艳, 吴超.某铅锌矿区公路两侧土壤重金属污染分布研究[J].环境工程, 2017, 35(1):137.

    Google Scholar

    [5] 米雅竹, 李博, 湛方栋, 等.会泽铅锌矿区农田土壤镉、铅和养分分布特征及污染评价[J].云南农业大学学报(自然科学), 2019, 34(2):344-352.

    Google Scholar

    [6] ANGELETTI R, BINATO G, GUIDOTTI M, et al. Cadmium bioaccumulation in Mediterranean spider crab (Maya squinado):Human consumption and health implications for exposure in Italian population[J]. Chemosphere, 2014, 100:83-88. doi: 10.1016/j.chemosphere.2013.12.056

    CrossRef Google Scholar

    [7] AJIMA MNO, NNODI PC, OGO OA, et al. Bioaccumulation of heavy metals in Mbaa River and the impact on aquatic ecosystem[J]. Environmental monitoring and assessment, 2015, 187(12):1-9.

    Google Scholar

    [8] ULLAH S, HASAN Z, ZUBERI A. Heavy metals in three commercially valuable cyprinids in the river Panjkora, district Lower Dir, Khyber Pakhtunkhwa, Pakistan[J]. Toxicological & Environmental Chemistry, 2016, 98(1):64-76.

    Google Scholar

    [9] ALI H, KHAN E, SAJAD MA. Phytoremediation of heavy metals-Concepts and applications[J]. Chemosphere, 2013, 91(7):869-81. doi: 10.1016/j.chemosphere.2013.01.075

    CrossRef Google Scholar

    [10] SHEORAN V, SHEORAN A S, POONIA P. Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites:A review[J]. Critical Reviews in Environmental Science and Technology, 2010, 41(2):168-214. doi: 10.1080/10643380902718418

    CrossRef Google Scholar

    [11] LI X, PENG W, JIA Y, et al. Removal of cadmium and zinc from contaminated wastewater using Rhodobacter sphaeroides[J]. Water Science & Technology, 2017, 75(11):2489-2498.

    Google Scholar

    [12] GEOFFREY M. GADD. Microbial influence on metal mobility and application for bioremediation[J]. Geoderma, 2004, 122(2):109-119.

    Google Scholar

    [13] PABST MW, MILLER CD, DIMKPA CO, et al. Defining the surface adsorption and internalization of copper and cadmium in a soil bacterium, Pseudomonas putida[J]. Chemosphere, 2010, 81(7):904-910. doi: 10.1016/j.chemosphere.2010.07.069

    CrossRef Google Scholar

    [14] 周芳如.微生物菌剂对镉污染土壤的修复及其生态效应[D].长沙: 湖南农业大学, 2015.

    Google Scholar

    [15] 张艳林, 蔡云梅, 邹志辉, 等.嗜酸氧化亚铁硫杆菌胞外聚合物与Cd2+在吸附过程中的交互作用[J].环境科学导刊, 2018, 37(6):58-62.

    Google Scholar

    [16] 付林波.白腐真菌胞外聚合物的提取及其对重金属镉的吸附研究[D].桂林: 桂林理工大学, 2018.

    Google Scholar

    [17] 魏德洲, 代淑娟, 等.枯草芽孢杆菌吸附电镀废水中镉前后的浮选性能研究[J].安全与环境学报, 2008, 8(4):27-31.

    Google Scholar

    [18] ZHANG JH, MIN H. Characterization of a multimetal resistant Burkholderia fungorum isolated from an e-waste recycling area for its potential in Cd sequestration[J]. World Journal of Microbiology & Biotechnology, 2010, 26(2):371-374.

    Google Scholar

    [19] 张海鸥, 周维芝, 等.微生物胞外聚合物对重金属镉的解毒作用及红外光谱分析[J].光谱学与光谱分析, 2013, 33(11):3041-3043.

    Google Scholar

    [20] 晋银佳, 刘文, 等.荧光假单胞菌产铁载体对油麦菜吸收砂基和水基中镉的影响[J].环境工程学报, 2016, 10(1):415-420.

    Google Scholar

    [21] 程为波, 杨丽娟.重金属污染环境的微生物修复原理研究[J].中国资源综合利用, 2019, 37(6):164-166.

    Google Scholar

    [22] 杨琳琳, 季秀玲, 吴潇, 等.微生物在成矿及矿区环境修复中的应用研究现状[J].生命科学, 2011, 23(003):306-310.

    Google Scholar

    [23] 余雪梅, 彭书明, 王洪婷, 等.耐镉芽孢杆菌对Cd2+的吸附机制[J].江苏农业科学, 2019, 47(20):293-297.

    Google Scholar

    [24] 林雁冰.金属矿区及污水灌溉区抗重金属放线菌的筛选及吸附机理研究[D].咸阳: 西北农林科技大学, 2010.

    Google Scholar

    [25] HUANG F, DANG Z, GUO CL, et al. Biosorption of Cd(Ⅱ) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil[J]. Colloids & Surfaces B:Biointerfaces, 2013, 107:11-18.

    Google Scholar

    [26] 王薇.Bacillus cereus Cd01自诱导pH对镉矿化和土壤镉形态的影响机制[D].湘潭: 湘潭大学, 2018.

    Google Scholar

    [27] RANIA, SOUCHEYS, GOEL R. Comparative assessment of in situ bioremediation potential of cadmium resistant aci-dophilic Pseudomonas putida 62BN and alkalophilic Pseudomonas monteilli 97AN strains on soybean[J]. International Biodeterioration & Biodegradation, 2009, 63(1):62-66.

    Google Scholar

    [28] 黄飞.蜡状芽孢杆菌对水体中镉的吸附特性与机理研究[D].广州: 华南理工大学, 2013.

    Google Scholar

    [29] 李停停, 宗婧婧, 高学慧, 等.金属硫蛋白的研究进展[J].安徽农业科学, 2018, 46(25):15-18.

    Google Scholar

    [30] SULEMAN A, SHAKOORI AR. Evaluation of physiological importance of metallothionein protein expressed by Tetrahymenacadmium metallothionein 1(TMCdl) gene in Escherichia coli[J]. Journal of Cellular Biochemistry, 2012, 113(5):1616-1622. doi: 10.1002/jcb.24030

    CrossRef Google Scholar

    [31] 汤晓燕.金属硫蛋白细胞表面展示提高酵母对重金属吸附的能力[D].大连: 大连理工大学, 2015.

    Google Scholar

    [32] 张弛, 马青兰.MT基因工程菌去除污水中Cd、Ni[J].化工学报, 2012, 63(7):2241-2245.

    Google Scholar

    [33] KURODA K, UEDA M. Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His[J]. Applied Microbiology and Biotechnology, 2003, 63(2):182-186.

    Google Scholar

    [34] SIEGEL S M, KELLER P, SIEGEL BZ, et al. Metal speciation, separation and recovery[M]. Chicago:Kluwer AcademicPublishers, 1986:77-94.

    Google Scholar

    [35] CHANMUGATHAS P, BOLLAG J M. A column study of the biological mobilization and speciation of cadmium in soil[J]. Archives of Environmental Contamination & Toxicology, 1988, 17(2):229-237.

    Google Scholar

    [36] 王京文, 李丹, 柳俊, 等.耐镉菌株对土壤镉形态及土壤微生物群落结构的影响[J].农业环境科学学报, 2015, 34(9):1693-1699.

    Google Scholar

    [37] XU ML, LIU YZ, DENG Y, et al. Bioremediation of cadmium-contaminated paddy soil using an autotrophic and heterotrophic mixture[J]. Rsc Advances, 2020, 10(44):26090-26101. doi: 10.1039/D0RA03935G

    CrossRef Google Scholar

    [38] HAO X, ZHU P, ZHANG H, et al. Mixotrophic acidophiles increase cadmium soluble fraction and phytoextraction efficiency from cadmium contaminated soils[J]. Science of the Total Environment 2019, 655:347-355.

    Google Scholar

    [39] 杨卓, 李术娜, 等.接种微生物对土壤中Cd、Pb、Zn生物有效性的影响[J].土壤学报, 2009, 46(4):670-675.

    Google Scholar

    [40] WEI XC, LI JJ, HUANG WL, et al. Comparative study of iron-oxidizing and sulfur-oxidizing bioleaching processes for heavy metal removal and nutrient leaching from pig manure[J]. Water Air and Soil Pollution 2020, 231(2):11.

    Google Scholar

    [41] PILON-SMITS E. Phytoremediation[J]. Annual Review of Plant Biology, 2005, 56(1):15. doi: 10.1146/annurev.arplant.56.032604.144214

    CrossRef Google Scholar

    [42] 黄文.产表面活性剂根际菌协同龙葵修复镉污染土壤[J].环境科学与技术, 2011, 34(10):48-52.

    Google Scholar

    [43] 刘卫敏.重金属污染土壤的植物-微生物-土壤改良的联合修复技术研究[D].北京林业大学, 2016.

    Google Scholar

    [44] 高玉倩.铅锌尾矿植物和微生物联合修复技术研究[D].唐山: 河北联合大学, 2012.

    Google Scholar

    [45] SIDHU GPS, BALI AS, BHARDWAJ R. Use of fungi in mitigating cadmium toxicity in plants. In:hasanuzzaman m, prasad mnv, fujita m(eds). Cadmium toxicity and tolerance in plants:from physiology to remediation[M]. Academic Press Elsevier UK, 2018:397-420.

    Google Scholar

    [46] 罗方舟, 向垒, 李慧, 等.丛枝菌根真菌对旱稻生长、Cd吸收累积和土壤酶活性的影响[J].农业环境科学学报, 2015, 34(6):1090-1095.

    Google Scholar

    [47] LI H, LUO N, ZHANG L J, et al. Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice?[J]. Science of the Total Environment, 2016, 571(15):1183-1190.

    Google Scholar

    [48] 胡振琪, 杨秀红, 高爱林, 等.镉污染土壤的菌根修复研究[J].中国矿业大学学报, 2007, 36(2):237-240.

    Google Scholar

    [49] 刘志培, 刘双江.我国污染土壤生物修复技术的发展及现状[J].生物工程学报, 2015(6):155-170.

    Google Scholar

    [50] 段卓群.硅钙基土壤调理剂对Cd污染稻田的修复应用研究[D].长沙: 湖南农业大学, 2018.

    Google Scholar

    [51] VIMAL SR, SINGH JS, ARORA NK, et al. Soil-plant-microbe interactions in stressed agriculture management:A review[J]. Pedosphere 2017, 27(2):177-192. doi: 10.1016/S1002-0160(17)60309-6

    CrossRef Google Scholar

    [52] AHMAD M, RAJAPAKSHA AU, LIM JE, et al. Biochar as a sorbent for contaminant management in soil and water:A review[J]. Chemosphere, 2014., 99:19-33.

    Google Scholar

    [53] GODLEWSKA P, SCHMIDT HP, OK YS, et al. Biochar for composting improvement and contaminants reduction. A review[J]. Bioresource Technology, 2017, 246:193-202.

    Google Scholar

    [54] CHEN H, ZHANG J, TANG L, et al. Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria[J]. Environment International, 2019, 127:395-401. doi: 10.1016/j.envint.2019.03.068

    CrossRef Google Scholar

    [55] WU G, KANG H, ZHANG X, et al. A critical review on the bio-removal of hazardous heavy metals from contaminated soils:issues, progress, eco-environmental concerns and opportunities[J]. Journal of hazardous materials, 2010, 174:1-3. doi: 10.1016/j.jhazmat.2009.09.113

    CrossRef Google Scholar

    [56] NIE C, YANG X, NIAZI N K, et al. Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity:A field study[J]. Chemosphere, 2018, 200:274. doi: 10.1016/j.chemosphere.2018.02.134

    CrossRef Google Scholar

    [57] QI F, LAMB D, NAIDU R, et al. Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar[J]. Science of the Total Environment, 2018, s 610-611:1457-1466.

    Google Scholar

    [58] BANDARA T, FRANKS A, XU J, et al. Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils[J]. Critical Reviews in Environmental science and Technology, 2019(4):1-76.

    Google Scholar

    [59] TU C, WEI J, GUAN F, et al. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil[J]. Environment International, 2020, 137:105576. doi: 10.1016/j.envint.2020.105576

    CrossRef Google Scholar

    [60] WU B, WANG Z, ZHAO Y, et al. The performance of biochar-microbe multiple biochemical material on bioremediation and soil micro-ecology in the cadmium aged soil[J]. Science of the Total Environment, 2019, 686:719-728. doi: 10.1016/j.scitotenv.2019.06.041

    CrossRef Google Scholar

    [61] WEI J, TU C, YUAN G, et al. Assessing the effect of pyrolysis temperature on the molecular properties and copper sorption capacity of a halophyte biochar[J]. Environmental Pollution, 2019, 251:56-65. doi: 10.1016/j.envpol.2019.04.128

    CrossRef Google Scholar

    [62] WANG RZ, HUANG DL, LIU YG, et al. Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock[J]. Bioresource Technology, 2018, 261:265-271. doi: 10.1016/j.biortech.2018.04.032

    CrossRef Google Scholar

    [63] QIAO JT, LIU TX, WANG XQ, et al. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils[J]. Chemosphere 2018, 195:260-271.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1606) PDF downloads(39) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint