[1] |
全国土壤污染状况调查公报[EB/OL].(2014-04-17). http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm.
Google Scholar
|
[2] |
LI Z, MA Z, VAN DER KUIJP TJ, et al. A review of soil heavy metal pollution from mines in China:pollution and health risk assessment[J]. Science of the Total Environment 2014, 468-469:843-853.
Google Scholar
|
[3] |
陈思奇, 杨雨薇, 杨其亮, 等.国内土壤重金属镉污染修复技术应用现状与展望[J].安徽化工, 2020, 46(1):8-12.
Google Scholar
|
[4] |
李晓艳, 吴超.某铅锌矿区公路两侧土壤重金属污染分布研究[J].环境工程, 2017, 35(1):137.
Google Scholar
|
[5] |
米雅竹, 李博, 湛方栋, 等.会泽铅锌矿区农田土壤镉、铅和养分分布特征及污染评价[J].云南农业大学学报(自然科学), 2019, 34(2):344-352.
Google Scholar
|
[6] |
ANGELETTI R, BINATO G, GUIDOTTI M, et al. Cadmium bioaccumulation in Mediterranean spider crab (Maya squinado):Human consumption and health implications for exposure in Italian population[J]. Chemosphere, 2014, 100:83-88. doi: 10.1016/j.chemosphere.2013.12.056
CrossRef Google Scholar
|
[7] |
AJIMA MNO, NNODI PC, OGO OA, et al. Bioaccumulation of heavy metals in Mbaa River and the impact on aquatic ecosystem[J]. Environmental monitoring and assessment, 2015, 187(12):1-9.
Google Scholar
|
[8] |
ULLAH S, HASAN Z, ZUBERI A. Heavy metals in three commercially valuable cyprinids in the river Panjkora, district Lower Dir, Khyber Pakhtunkhwa, Pakistan[J]. Toxicological & Environmental Chemistry, 2016, 98(1):64-76.
Google Scholar
|
[9] |
ALI H, KHAN E, SAJAD MA. Phytoremediation of heavy metals-Concepts and applications[J]. Chemosphere, 2013, 91(7):869-81. doi: 10.1016/j.chemosphere.2013.01.075
CrossRef Google Scholar
|
[10] |
SHEORAN V, SHEORAN A S, POONIA P. Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites:A review[J]. Critical Reviews in Environmental Science and Technology, 2010, 41(2):168-214. doi: 10.1080/10643380902718418
CrossRef Google Scholar
|
[11] |
LI X, PENG W, JIA Y, et al. Removal of cadmium and zinc from contaminated wastewater using Rhodobacter sphaeroides[J]. Water Science & Technology, 2017, 75(11):2489-2498.
Google Scholar
|
[12] |
GEOFFREY M. GADD. Microbial influence on metal mobility and application for bioremediation[J]. Geoderma, 2004, 122(2):109-119.
Google Scholar
|
[13] |
PABST MW, MILLER CD, DIMKPA CO, et al. Defining the surface adsorption and internalization of copper and cadmium in a soil bacterium, Pseudomonas putida[J]. Chemosphere, 2010, 81(7):904-910. doi: 10.1016/j.chemosphere.2010.07.069
CrossRef Google Scholar
|
[14] |
周芳如.微生物菌剂对镉污染土壤的修复及其生态效应[D].长沙: 湖南农业大学, 2015.
Google Scholar
|
[15] |
张艳林, 蔡云梅, 邹志辉, 等.嗜酸氧化亚铁硫杆菌胞外聚合物与Cd2+在吸附过程中的交互作用[J].环境科学导刊, 2018, 37(6):58-62.
Google Scholar
|
[16] |
付林波.白腐真菌胞外聚合物的提取及其对重金属镉的吸附研究[D].桂林: 桂林理工大学, 2018.
Google Scholar
|
[17] |
魏德洲, 代淑娟, 等.枯草芽孢杆菌吸附电镀废水中镉前后的浮选性能研究[J].安全与环境学报, 2008, 8(4):27-31.
Google Scholar
|
[18] |
ZHANG JH, MIN H. Characterization of a multimetal resistant Burkholderia fungorum isolated from an e-waste recycling area for its potential in Cd sequestration[J]. World Journal of Microbiology & Biotechnology, 2010, 26(2):371-374.
Google Scholar
|
[19] |
张海鸥, 周维芝, 等.微生物胞外聚合物对重金属镉的解毒作用及红外光谱分析[J].光谱学与光谱分析, 2013, 33(11):3041-3043.
Google Scholar
|
[20] |
晋银佳, 刘文, 等.荧光假单胞菌产铁载体对油麦菜吸收砂基和水基中镉的影响[J].环境工程学报, 2016, 10(1):415-420.
Google Scholar
|
[21] |
程为波, 杨丽娟.重金属污染环境的微生物修复原理研究[J].中国资源综合利用, 2019, 37(6):164-166.
Google Scholar
|
[22] |
杨琳琳, 季秀玲, 吴潇, 等.微生物在成矿及矿区环境修复中的应用研究现状[J].生命科学, 2011, 23(003):306-310.
Google Scholar
|
[23] |
余雪梅, 彭书明, 王洪婷, 等.耐镉芽孢杆菌对Cd2+的吸附机制[J].江苏农业科学, 2019, 47(20):293-297.
Google Scholar
|
[24] |
林雁冰.金属矿区及污水灌溉区抗重金属放线菌的筛选及吸附机理研究[D].咸阳: 西北农林科技大学, 2010.
Google Scholar
|
[25] |
HUANG F, DANG Z, GUO CL, et al. Biosorption of Cd(Ⅱ) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil[J]. Colloids & Surfaces B:Biointerfaces, 2013, 107:11-18.
Google Scholar
|
[26] |
王薇.Bacillus cereus Cd01自诱导pH对镉矿化和土壤镉形态的影响机制[D].湘潭: 湘潭大学, 2018.
Google Scholar
|
[27] |
RANIA, SOUCHEYS, GOEL R. Comparative assessment of in situ bioremediation potential of cadmium resistant aci-dophilic Pseudomonas putida 62BN and alkalophilic Pseudomonas monteilli 97AN strains on soybean[J]. International Biodeterioration & Biodegradation, 2009, 63(1):62-66.
Google Scholar
|
[28] |
黄飞.蜡状芽孢杆菌对水体中镉的吸附特性与机理研究[D].广州: 华南理工大学, 2013.
Google Scholar
|
[29] |
李停停, 宗婧婧, 高学慧, 等.金属硫蛋白的研究进展[J].安徽农业科学, 2018, 46(25):15-18.
Google Scholar
|
[30] |
SULEMAN A, SHAKOORI AR. Evaluation of physiological importance of metallothionein protein expressed by Tetrahymenacadmium metallothionein 1(TMCdl) gene in Escherichia coli[J]. Journal of Cellular Biochemistry, 2012, 113(5):1616-1622. doi: 10.1002/jcb.24030
CrossRef Google Scholar
|
[31] |
汤晓燕.金属硫蛋白细胞表面展示提高酵母对重金属吸附的能力[D].大连: 大连理工大学, 2015.
Google Scholar
|
[32] |
张弛, 马青兰.MT基因工程菌去除污水中Cd、Ni[J].化工学报, 2012, 63(7):2241-2245.
Google Scholar
|
[33] |
KURODA K, UEDA M. Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His[J]. Applied Microbiology and Biotechnology, 2003, 63(2):182-186.
Google Scholar
|
[34] |
SIEGEL S M, KELLER P, SIEGEL BZ, et al. Metal speciation, separation and recovery[M]. Chicago:Kluwer AcademicPublishers, 1986:77-94.
Google Scholar
|
[35] |
CHANMUGATHAS P, BOLLAG J M. A column study of the biological mobilization and speciation of cadmium in soil[J]. Archives of Environmental Contamination & Toxicology, 1988, 17(2):229-237.
Google Scholar
|
[36] |
王京文, 李丹, 柳俊, 等.耐镉菌株对土壤镉形态及土壤微生物群落结构的影响[J].农业环境科学学报, 2015, 34(9):1693-1699.
Google Scholar
|
[37] |
XU ML, LIU YZ, DENG Y, et al. Bioremediation of cadmium-contaminated paddy soil using an autotrophic and heterotrophic mixture[J]. Rsc Advances, 2020, 10(44):26090-26101. doi: 10.1039/D0RA03935G
CrossRef Google Scholar
|
[38] |
HAO X, ZHU P, ZHANG H, et al. Mixotrophic acidophiles increase cadmium soluble fraction and phytoextraction efficiency from cadmium contaminated soils[J]. Science of the Total Environment 2019, 655:347-355.
Google Scholar
|
[39] |
杨卓, 李术娜, 等.接种微生物对土壤中Cd、Pb、Zn生物有效性的影响[J].土壤学报, 2009, 46(4):670-675.
Google Scholar
|
[40] |
WEI XC, LI JJ, HUANG WL, et al. Comparative study of iron-oxidizing and sulfur-oxidizing bioleaching processes for heavy metal removal and nutrient leaching from pig manure[J]. Water Air and Soil Pollution 2020, 231(2):11.
Google Scholar
|
[41] |
PILON-SMITS E. Phytoremediation[J]. Annual Review of Plant Biology, 2005, 56(1):15. doi: 10.1146/annurev.arplant.56.032604.144214
CrossRef Google Scholar
|
[42] |
黄文.产表面活性剂根际菌协同龙葵修复镉污染土壤[J].环境科学与技术, 2011, 34(10):48-52.
Google Scholar
|
[43] |
刘卫敏.重金属污染土壤的植物-微生物-土壤改良的联合修复技术研究[D].北京林业大学, 2016.
Google Scholar
|
[44] |
高玉倩.铅锌尾矿植物和微生物联合修复技术研究[D].唐山: 河北联合大学, 2012.
Google Scholar
|
[45] |
SIDHU GPS, BALI AS, BHARDWAJ R. Use of fungi in mitigating cadmium toxicity in plants. In:hasanuzzaman m, prasad mnv, fujita m(eds). Cadmium toxicity and tolerance in plants:from physiology to remediation[M]. Academic Press Elsevier UK, 2018:397-420.
Google Scholar
|
[46] |
罗方舟, 向垒, 李慧, 等.丛枝菌根真菌对旱稻生长、Cd吸收累积和土壤酶活性的影响[J].农业环境科学学报, 2015, 34(6):1090-1095.
Google Scholar
|
[47] |
LI H, LUO N, ZHANG L J, et al. Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice?[J]. Science of the Total Environment, 2016, 571(15):1183-1190.
Google Scholar
|
[48] |
胡振琪, 杨秀红, 高爱林, 等.镉污染土壤的菌根修复研究[J].中国矿业大学学报, 2007, 36(2):237-240.
Google Scholar
|
[49] |
刘志培, 刘双江.我国污染土壤生物修复技术的发展及现状[J].生物工程学报, 2015(6):155-170.
Google Scholar
|
[50] |
段卓群.硅钙基土壤调理剂对Cd污染稻田的修复应用研究[D].长沙: 湖南农业大学, 2018.
Google Scholar
|
[51] |
VIMAL SR, SINGH JS, ARORA NK, et al. Soil-plant-microbe interactions in stressed agriculture management:A review[J]. Pedosphere 2017, 27(2):177-192. doi: 10.1016/S1002-0160(17)60309-6
CrossRef Google Scholar
|
[52] |
AHMAD M, RAJAPAKSHA AU, LIM JE, et al. Biochar as a sorbent for contaminant management in soil and water:A review[J]. Chemosphere, 2014., 99:19-33.
Google Scholar
|
[53] |
GODLEWSKA P, SCHMIDT HP, OK YS, et al. Biochar for composting improvement and contaminants reduction. A review[J]. Bioresource Technology, 2017, 246:193-202.
Google Scholar
|
[54] |
CHEN H, ZHANG J, TANG L, et al. Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria[J]. Environment International, 2019, 127:395-401. doi: 10.1016/j.envint.2019.03.068
CrossRef Google Scholar
|
[55] |
WU G, KANG H, ZHANG X, et al. A critical review on the bio-removal of hazardous heavy metals from contaminated soils:issues, progress, eco-environmental concerns and opportunities[J]. Journal of hazardous materials, 2010, 174:1-3. doi: 10.1016/j.jhazmat.2009.09.113
CrossRef Google Scholar
|
[56] |
NIE C, YANG X, NIAZI N K, et al. Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity:A field study[J]. Chemosphere, 2018, 200:274. doi: 10.1016/j.chemosphere.2018.02.134
CrossRef Google Scholar
|
[57] |
QI F, LAMB D, NAIDU R, et al. Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar[J]. Science of the Total Environment, 2018, s 610-611:1457-1466.
Google Scholar
|
[58] |
BANDARA T, FRANKS A, XU J, et al. Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils[J]. Critical Reviews in Environmental science and Technology, 2019(4):1-76.
Google Scholar
|
[59] |
TU C, WEI J, GUAN F, et al. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil[J]. Environment International, 2020, 137:105576. doi: 10.1016/j.envint.2020.105576
CrossRef Google Scholar
|
[60] |
WU B, WANG Z, ZHAO Y, et al. The performance of biochar-microbe multiple biochemical material on bioremediation and soil micro-ecology in the cadmium aged soil[J]. Science of the Total Environment, 2019, 686:719-728. doi: 10.1016/j.scitotenv.2019.06.041
CrossRef Google Scholar
|
[61] |
WEI J, TU C, YUAN G, et al. Assessing the effect of pyrolysis temperature on the molecular properties and copper sorption capacity of a halophyte biochar[J]. Environmental Pollution, 2019, 251:56-65. doi: 10.1016/j.envpol.2019.04.128
CrossRef Google Scholar
|
[62] |
WANG RZ, HUANG DL, LIU YG, et al. Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock[J]. Bioresource Technology, 2018, 261:265-271. doi: 10.1016/j.biortech.2018.04.032
CrossRef Google Scholar
|
[63] |
QIAO JT, LIU TX, WANG XQ, et al. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils[J]. Chemosphere 2018, 195:260-271.
Google Scholar
|