Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 2
Article Contents

HU Yiwen, WANG Liming, CAO Zhao, ZHANG Wenbo. Research Progress on Rare Earth Ore Metallurgy and Separation Technology in China[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 151-161. doi: 10.13779/j.cnki.issn1001-0076.2020.02.020
Citation: HU Yiwen, WANG Liming, CAO Zhao, ZHANG Wenbo. Research Progress on Rare Earth Ore Metallurgy and Separation Technology in China[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 151-161. doi: 10.13779/j.cnki.issn1001-0076.2020.02.020

Research Progress on Rare Earth Ore Metallurgy and Separation Technology in China

More Information
  • In this paper, the research status and progress on metallurgy, separation and purification process for different rare earth resources in China are reviewed. At present, the metallurgy methods for mixed rare earth minerals mainly include concentrated sulfuric acid roasting-water leaching, alkaline decomposition process and acid leaching-alkali dissolving process; the metallurgy methods for bastnaesite mainly include oxidation roasting-sulfuric acid leaching, alkali metallurgy and pyrometallurgy process. The hydrometallurgical technology for weathering crust leached rare earth ores is mainly composed of ammonium sulfate in-situ leaching and ammonium bicarbonate precipitation process, however, which is currently being replaced by cleaner magnesium salt leaching process. Rare earth separation and purification methods mainly include chemical precipitation, solvent extraction, ion exchange, extraction chromatography and liquid membrane separation methods. On the basis of comprehensive comparison between the advantages and disadvantages of different separation and purification methods, a new method is proposed for rare earth separation and purification-extraction precipitation process; besides, related suggestions are put forward for the comprehensive utilization of rare earth resources.

  • 加载中
  • [1] 李振, 胡家祯.世界稀土资源概况及开发利用趋势[J].现代矿业, 2017, 33(2):97-101, 105.

    Google Scholar

    [2] 张博, 宁阳坤, 曹飞, 等.世界稀土资源现状[J].矿产综合利用, 2018(4):7-12.

    Google Scholar

    [3] 张苏江, 张立伟, 张彦文, 等.国内外稀土矿产资源及其分布概述[J].无机盐工业, 2020, 52(1):9-16.

    Google Scholar

    [4] 王晴, 王帅, 周纯洁.稀土提取与分离技术研究进展[J].应用化工, 2015, 44(2):336-339, 354.

    Google Scholar

    [5] 卢勇.稀土资源提取分离技术研究进展[J].四川有色金属, 2019(3):3-6.

    Google Scholar

    [6] Huang Xiao Wei, Long Zhi Qi, et al. Technology development for rare earth cleaner hydrometallurgy in China[J]. Rare Metals, 2015, 34(4):215-222.

    Google Scholar

    [7] 马莹, 李娜, 王其伟, 等.白云鄂博矿稀土资源的特点及研究开发现状[J].中国稀土学报, 2016, 34(6):641-649.

    Google Scholar

    [8] 郭小龙, 韩满璇, 李建丽.包头稀土矿冶炼分离过程抑制硫酸钙结垢研究[J].稀土, 2019, 40(4):110-116.

    Google Scholar

    [9] 郎晓川, 于秀兰.我国混合稀土精矿处理方法的研究进展[J].稀有金属与硬质合金, 2009, 37(3):43-47.

    Google Scholar

    [10] 余宗鹤.硫酸体系碳酸氢镁沉淀制备碳酸稀土过程研究[D].北京: 北京有色金属研究总院, 2019.

    Google Scholar

    [11] 冯宗玉, 黄小卫, 王猛, 张国成.典型稀土资源提取分离过程的绿色化学进展及趋势[J].稀有金属, 2017, 41(5):604-612.

    Google Scholar

    [12] 王猛, 黄小卫, 冯宗玉, 等.包头混合型稀土矿冶炼分离过程的绿色工艺进展及趋势[J].稀有金属, 2019, 43(11):1131-1141.

    Google Scholar

    [13] 李梅.白云鄂博稀土及伴生资源清洁高效提取新工艺[C]//中国有色金属学会、中国稀土学会、包头稀土研究院、江西理工大学.2015年全国稀土金属冶金工程技术交流会论文集.中国有色金属学会、中国稀土学会、包头稀土研究院、江西理工大学: 中国稀土学会, 2015: 29-33.

    Google Scholar

    [14] 冯婕, 潘明友, 李德虎.液碱法分解氟碳铈矿生产氯化稀土的研究[J].矿冶工程, 1998(2):55-58.

    Google Scholar

    [15] 孙培梅, 李洪桂, 李运姣, 等.机械活化碱分解独居石新工艺[J].中南工业大学学报, 1998(1):36-38.

    Google Scholar

    [16] 许延辉, 刘海蛟, 崔建国, 等.包头混合稀土矿清洁冶炼资源综合提取技术研究[J].中国稀土学报, 2012, 30(5):632-635.

    Google Scholar

    [17] 王秀艳, 马玉莹, 张丽萍, 等.包头稀土精矿硫酸低温焙烧分解工艺研究[J].稀土, 2003, 24(4):29-31.

    Google Scholar

    [18] 张丽.包头稀土矿碳酸钠焙烧过程铈(Ⅳ)、氟、磷的相互作用及萃取机理研究[D].长春: 吉林大学, 2013.

    Google Scholar

    [19] Li Jianfei, Li Mei, Zhang Dongliang, et al. Clean production technology of Baiyun Obo rare earth concentrate decomposed by Al(OH)3-NaOH[J]. Chemical Engineering Journal, 2020, https://doi.org/10.1016/j.cej.2019.122790. doi: 10.1016/j.cej.2019.122790

    CrossRef Google Scholar

    [20] 李梅, 柳召刚, 张栋梁, 等.白云鄂博稀土精矿制备氯化稀土的新方法: CN102277483A[P]. 2011-12-14.

    Google Scholar

    [21] 杨庆山, 杨涛.氟碳铈矿的冶炼新工艺研究[J].稀有金属与硬质合金, 2014, 42(1):1-4.

    Google Scholar

    [22] Wang Liangshi, Huang Xiaowei, Yu Ying, et al. Towards cleaner production of rare earth elements from bastnaesite in China[J]. Journal of Cleaner Production, 2017, 165:231-242.

    Google Scholar

    [23] Huang Xiaowei, Long Zhiqi, Li Hongwei, et al. Development of Rare Earth Hydrometallurgy Technology in China[J]. 2005, 23(1): 1-4

    Google Scholar

    [24] 张春媛.包头矿浓硫酸焙烧水浸液碳酸钠除钍制取混合稀土[J].稀土, 1982(1):27-32, 18.

    Google Scholar

    [25] 刘志强, 陈怀杰.从NdFeB磁体废料中回收稀土的工艺[J].材料研究与应用, 2009, 3(2):134-137..

    Google Scholar

    [26] 胡家仕.Cyanex923对轻重稀土绿色分离工艺研究[D].呼和浩特: 内蒙古大学, 2019.

    Google Scholar

    [27] 刘倩琛, 陈思竹.氟碳铈矿冶炼分离研究进展[J].四川有色金属, 2018(1):8-10.

    Google Scholar

    [28] 张国成, 黄小卫.氟碳铈矿冶炼工艺述评[J].稀有金属, 1997(3):34-40.

    Google Scholar

    [29] 杨育圣.熔盐电解法分离钐、钆、镝的研究[D].哈尔滨: 哈尔滨工程大学, 2014.

    Google Scholar

    [30] Wang Li, Liao Chunfa, Yang Youming, et al. Effects of organic acids on the leaching process of ion-adsorption type rare earth ore[J]. Journal of Rare Earths, 2017, 35(12):1233-1238.

    Google Scholar

    [31] 史晓燕, 陈宏文.废弃池浸堆浸离子型稀土矿污染途径及其修复研究[J].中国稀土学报, 2019, 37(4):409-417.

    Google Scholar

    [32] 池汝安, 刘雪梅.风化壳淋积型稀土矿开发的现状及展望[J].中国稀土学报, 2019, 37(2):129-140.

    Google Scholar

    [33] 施展华, 朱健玲, 程哲, 等.离子型稀土开采提取技术的现状与发展[J].世界有色金属, 2018(17):48, 50.

    Google Scholar

    [34] 伍红强.离子型稀土矿抑杂浸出工艺及机理研究[D].赣州: 江西理工大学, 2012.

    Google Scholar

    [35] 尹敬群, 付桂明, 万茵, 等.从风化壳淋积型稀土矿浸取液提取稀土技术与发展[J].江西科学, 2012, 30(5):574-578, 616.

    Google Scholar

    [36] 李永绣.离子型稀土高效分离与环境保护技术研究新进展[C]//中国化学会.2011年中西部地区无机化学化工学术研讨会论文集.中国化学会: 中国化学会, 2010: 245-249.

    Google Scholar

    [37] 陶小明.化学沉淀法处理稀土工艺中的氯铵废水[D].武汉: 武汉纺织大学, 2014.

    Google Scholar

    [38] 邓振乡, 秦磊, 王观石, 等.离子型稀土矿山氨氮污染及其治理研究进展[J].稀土, 2019, 40(2):120-129.

    Google Scholar

    [39] 胡智, 张臻悦, 池汝安, 等.复合镁盐浸取风化壳淋积型稀土矿过程强化研究[J].金属矿山, 2020(3):95-101.

    Google Scholar

    [40] 王芳, 徐楠.磷酸铵镁法处理高浓度氨氮废水的应用研究[J].苏州科技大学学报(自然科学版), 2019, 36(3):46-49.

    Google Scholar

    [41] 许晓芳, 谭全银, 刘丽丽, 等.稀土元素分离与提纯技术研究现状及展望[J].环境污染与防治, 2019, 41(7):844-851.

    Google Scholar

    [42] 罗仙平, 钱有军, 梁长利.从离子型稀土矿浸取液中提取稀土的技术现状与展望[J].有色金属科学与工程, 2012, 3(5):50-53, 59.

    Google Scholar

    [43] 方中心, 何玲, 孙福海.稀土回收的草酸沉淀工艺及其动力学特性[J].兰州理工大学学报, 2019, 45(1):28-33.

    Google Scholar

    [44] 梁勇, 梁鑫, 温葆林, 黎永康, 等.硫酸铵-草酸联合法分离溶液中稀土和钙的研究[J].有色金属工程, 2018, 8(2):74-77.

    Google Scholar

    [45] 池汝安, 王博, 李隆峰, 等.用碳酸氢铵分离铝和稀土的新工艺研究[J].湖南化工, 1991(3):35-39.

    Google Scholar

    [46] 李慧琴, 李健, 赵永志, 等.碳酸氢铵沉淀法制备大颗粒球形氧化钇的研究[J].稀土, 2014, 35(3):77-81.

    Google Scholar

    [47] 李永绣, 周新木, 刘艳珠, 等.离子吸附型稀土高效提取和分离技术进展[J].中国稀土学报, 2012, 30(3):257-264.

    Google Scholar

    [48] 孟祥龙, 冯宗玉, 黄小卫, 等.氧化钙沉淀硫酸稀土过程中杂质的分布与去除[J].稀有金属, 2018, 42(10):1114-1120.

    Google Scholar

    [49] 赖富国.镁盐体系稀土浸出液氧化钙无氨沉淀富集过程研究[D].赣州: 江西理工大学, 2019.

    Google Scholar

    [50] Wang Weiwei, Cheng Chu Yong. Separation and purification of scandium by solvent extraction and related technologies:a review[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(10):1237-1246.

    Google Scholar

    [51] 邓佐国, 徐廷华.离子型稀土萃取分离工艺技术现状及发展方向[J].有色金属科学与工程, 2012, 3(4):20-23, 30.

    Google Scholar

    [52] Sibilev E. G., Polyakov, A. S. Recycling Rare-Earth-Metal waste using hydrometallurgical methods[J]. Theoretical Foundations of Chemical Engineering, 2016, 50(4):607-612.

    Google Scholar

    [53] 牟苗苗, 陈广, 罗兴.新型稀土萃取剂研究现状与进展[J].矿产保护与利用, 2015(4):73-78.

    Google Scholar

    [54] 薄其兵, 陆军, 李德谦, 张秀英.仲辛基苯氧基乙酸从稀土中萃取分离钪及其机理[J].分析化学, 2001, 29(1):45-48.

    Google Scholar

    [55] 张晓兵, 张小林.现代分离技术在稀土分离中的应用[J].有色冶金节能, 2019(6):8-10.

    Google Scholar

    [56] 李立清, 肖焱尹, 杨幼明, 等.P507-N235体系无皂化萃取氯化钕研究_李立清[J].有色金属工程, 2018, 8(6):47-50.

    Google Scholar

    [57] Bontha Radhika Surampally, Nagaphani Kumar Batchu, Lakshmi Kantam Mannepalli, Ramachandra Reddy. Journal of the Taiwan Institute of Chemical Engineers[J]. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43:839-844.

    Google Scholar

    [58] Zhaowu Zhu, ChuYong Cheng. Solvent extraction technology for the separation and purification of niobium and tantalum:A review[J]. Hydrometallurgy, 2011, 107:1-12.

    Google Scholar

    [59] 张平伟, 张力, 尤曙彤, 等.P350-HCl体系提取高纯氧化钪工艺研究[J].稀土, 1991(4):18-21.

    Google Scholar

    [60] 曹洪斌, 申明金, 陈莲惠.有机氧化膦类萃取剂在金属溶剂萃取中的应用[J].广东化工, 2013, 40(12):224-225.

    Google Scholar

    [61] 刘长畿.胺类萃取剂[J].有机化学, 1979(1):70-89.

    Google Scholar

    [62] 孔薇, 王春, 李德谦, 张秀英, 等.HBTMPTP与伯胺N1923对稀土元素(Ⅲ)的协同萃取[J].高等学校化学学报, 1997(2):177-181.

    Google Scholar

    [63] 刘瑞金, 赵治华, 桑晓云, 等.稀土萃取分离皂化工艺及其废水资源化探讨[J].稀土, 2015, 36(4):132-137.

    Google Scholar

    [64] Wang Ling Yun, Guo Qing Jie, Lee Man Seung. Recent advances in metal extraction improvement:Mixture systems consisting of ionic liquid and molecular extractant[J]. Separation and Purification Technology, 2019, 210:292-303.

    Google Scholar

    [65] Yong Zuo, Ji Chen, Deqian Li. Reversed micellar solubilization extraction and separation of thorium(IV) from rare earth(Ⅲ) by primary amine N1923 in ionic liquid[J]. Separation and Purification Technology, 2008, 63684-690.

    Google Scholar

    [66] 王威, 陈继, 刘红召, 等.功能性离子液体在金属萃取分离中的研究进展[J].应用化学, 2015, 32(7):733-742.

    Google Scholar

    [67] Su Xiang, Wang Yanliang, Guo Xiangguang, et al. Recovery of Sm(Ⅲ), Co(Ⅱ) and Cu(Ⅱ) from waste SmCo magnet by ionic liquid-based selective precipitation process[J]. Waste Management, 2018, 78:992-1000.

    Google Scholar

    [68] 杨华玲, 王威, 崔红敏, 等.硝酸体系中双功能离子液体萃取剂[A336][CA-12]/[A336][CA-100]萃取稀土的机理研究[J].分析化学, 2011, 39(10):1561-1566.

    Google Scholar

    [69] Wei Wang, Hualing Yang, Hongmin Cui, et al. Application of bifunctional ionic liquid extractants[A336][CA-12] and[A336][CA-100] to the lanthanum extraction and separation from rare earths in the chloride medium. 2011: 7534-7541.

    Google Scholar

    [70] Xiaoqi Sun, Yang Ji, Yu Liu, et al. An engineering-purpose preparation strategy for ammonium-type ionic liquid with high purity[J]. AIChE Journa, 2010, 56(4):989-996.

    Google Scholar

    [71] 黄国强, 张峰.轻稀土分离研究进展[J].现代化工, 2015, 35(10):12-15.

    Google Scholar

    [72] 陈园园.离子交换法从离子型稀土矿山尾液中回收稀土工艺及机理研究[D].赣州: 江西理工大学, 2014.

    Google Scholar

    [73] 冯艳伟, 何新秀, 江源成.高纯单一稀土元素分离技术现状[J].成都理工学院学报, 1996(S1):124-132.

    Google Scholar

    [74] 周骏宏, 田县利, 阮代锬.离子交换法提取磷矿硝解液中稀土元素的影响因素研究[J].中国稀土学报, 2016, 34(1):77-82.

    Google Scholar

    [75] 胡元钧.萃取色层在稀土分离中的应用[J].科技情报开发与经济, 2007(19):188-190, 201.

    Google Scholar

    [76] 廖春发, 聂华平, 焦芸芬, 等.萃取色层技术分离提纯稀土的现状与展望[J].过程工程学报, 2006, 6(S1):128-132.

    Google Scholar

    [77] 刘亚菲, 钱君律, 李义久, 等.CL-P507-HCl体系萃取色层分离铁, 镱, 镥[J].同济大学学报(自然科学版), 2000(5):605-608.

    Google Scholar

    [78] 廖春发, 梁勇, 焦芸芬, 等.Cyanex272浸渍树脂萃取色层法分离铥、镱、镥[J].稀有金属, 2007(6):824-828.

    Google Scholar

    [79] 肖燕飞, 黄小卫, 冯宗玉, 等.离子吸附型稀土矿绿色提取技术研究进展[J].稀土, 2015, 36(3):109-115.

    Google Scholar

    [80] 车丽萍, 余永富, 袁继祖, 等.乳状液膜技术从稀土浸出液中提取钍的试验研究[J].稀土, 2005(6):86-89.

    Google Scholar

    [81] 杨显万, 刘朗明.用支撑液膜(SLM)提取稀土[J].中国有色金属学报, 1993(3):30-34.

    Google Scholar

    [82] 吴全锋, 顾忠茂, 金兰瑞.静电式准液膜法从稀土矿浸出液中提取与浓缩稀土的探讨[J].稀土, 1991(4):1-6, 17.

    Google Scholar

    [83] Ni Shuainan, Wu Caibin, Wang Yanliang, et al. An extraction and precipitation process for the removal of Ca and Mg from ammonium sulfate rare earth wastewaters[J]. Hydrometallurgy, 2019, 187:63-70.

    Google Scholar

    [84] 周海月.新型稀土(钍)富集分离流程的研究[D].福建: 福建师范大学, 2018.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(1)

Article Metrics

Article views(3297) PDF downloads(205) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint