Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 2
Article Contents

PENG Cheng, CAO Zhicheng, LIU Changzheng, CUI Huijun. Pilot-scale Study on Direct Reduction of High Phosphorus Oolitic Hematite by Rotary Hearth Furnace[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 119-124. doi: 10.13779/j.cnki.issn1001-0076.2020.02.015
Citation: PENG Cheng, CAO Zhicheng, LIU Changzheng, CUI Huijun. Pilot-scale Study on Direct Reduction of High Phosphorus Oolitic Hematite by Rotary Hearth Furnace[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 119-124. doi: 10.13779/j.cnki.issn1001-0076.2020.02.015

Pilot-scale Study on Direct Reduction of High Phosphorus Oolitic Hematite by Rotary Hearth Furnace

More Information
  • With a pilot-scale test, high phosphorus oolitic hematite was firstly carried out in a rotary hearth furnace by direct reduction roasting and magnetic separation. Under the conditions of the mixed material mass ratio of raw ores, reduction coal, limestone and dephosphorization agent at the ratio of 100 GA6FA 20 GA6FA 15 GA6FA 1, the rotary hearth furnace roasting temperature from 1 150℃ to 1 250℃, the reduction time of 70 minutes, the thickness of containing coal pellets from 2 to 3 layers (55 to 65 mm), the metallized pellets could be obtained with an average metallization rate of 88.97%, the yield of iron powder treated with two stages grinding-magnetic separation of 42.35%, the TFe grade of 92.56%, the iron recovery of 84.26% and the P grade of 0.04%. The metal iron powder with a compact density of 5.02 t/m3 could be used as the high-quality steelmaking material in the electric furnace. The metal iron powder obtained by grinding separation of the metallized pellets with the roasting temperature of 1 250℃ and 1 300℃were analyzed by the scanning electron microscope (SEM). The result showed that phosphorus could be found in the metal iron powder with the roasting temperature of 1 300℃. It illustrates that the reduction temperature should be regulated to restore the iron selectively, rather than phosphorus with the high phosphorus oolitic hematite.

  • 加载中
  • [1] 韩跃新, 任多振, 孙永升, 等.高磷鲕状赤铁矿深度还原过程中磷的迁移规律[J].钢铁, 2013, 48(7):7-11.

    Google Scholar

    [2] 赵立鹏, 李国峰, 张涛, 等.高磷鲕状赤铁矿深度还原过程中磷灰石还原热力学研究[J].矿产保护与利用, 2018, 214(2):58-62, 68.

    Google Scholar

    [3] 闫龙飞, 周文涛, 韩跃新, 等.高磷鲕状赤铁矿提铁降磷研究综述[J].金属矿山, 2019, 512(2):16-20.

    Google Scholar

    [4] 赵栋, 李光强, 王恒辉, 等.高磷鲕状赤铁矿酸浸脱磷动力学[J].钢铁研究学报, 2017(11):22-30.

    Google Scholar

    [5] 王秋林, 陈雯, 余永富, 等.复杂难选高磷鲕状赤铁矿提铁降磷试验研究[J].矿产保护与利用, 2011(3):10-14.

    Google Scholar

    [6] 李永利, 孙体昌, 徐承焱, 等.高磷鲕状赤铁矿直接还原同步脱磷新脱磷剂[J].中南大学学报(自然科学版), 2012, 43(3):827-834.

    Google Scholar

    [7] 徐承焱, 孙体昌, 祁超英, 等.还原剂对高磷鲕状赤铁矿直接还原同步脱磷的影响[J].中国有色金属学报, 2011, 21(3):680-686.

    Google Scholar

    [8] 栗艳锋, 韩跃新, 孙永升, 等.CaO和Na2CO3用量对高磷鲕状赤铁矿石深度还原分选的影响[J].金属矿山, 2019, 512(2):60-65.

    Google Scholar

    [9] 彭程, 范建峰.宝钢转底炉工艺技术发展[J].钢铁, 2019, 54(2):103-106.

    Google Scholar

    [10] 李博, 毛艳丽, 王博蔚, 等.转底炉技术及其在含铁尘泥处理中的应用[J].鞍钢技术, 2017(6):11-15.

    Google Scholar

    [11] 佘雪峰, 孔令坛.转底炉的发展及其功能[J].山东冶金, 2015(6):1-5.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(942) PDF downloads(65) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint