Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 2
Article Contents

LU Liang, LIANG Shuang, ZHANG Xingrong, ZHU Yangge, HU Zhen, WANG Chengxing. Advanced Research on Galena Depressant in Copper-Lead Sulfides Flotation Separation[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 105-111. doi: 10.13779/j.cnki.issn1001-0076.2020.02.014
Citation: LU Liang, LIANG Shuang, ZHANG Xingrong, ZHU Yangge, HU Zhen, WANG Chengxing. Advanced Research on Galena Depressant in Copper-Lead Sulfides Flotation Separation[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 105-111. doi: 10.13779/j.cnki.issn1001-0076.2020.02.014

Advanced Research on Galena Depressant in Copper-Lead Sulfides Flotation Separation

More Information
  • In the flotation separation of complex polymetallic sulfide ore, the separation of copper sulfide and lead sulfide has always been a challenge due to the complex dissemination relationship and the similar floatability. Therefore, the application of highly selective inhibitors solves a key factor in separation. In this paper, the common galena depressants and their depressing mechanism were introduced from the perspective of inorganic depressants and organic depressants. Inorganic depressants are mainly including dichromate, sulfite and combined depressants. Dichromate is gradually being replaced by less-chromium process and non-chromium processes due to the high toxicity. Organic depressants have the advantages of diversity, wide sources, and low toxicity. The small-molecule organic depressants have better selectivity, while their inhibitory ability is relatively poor. The large-molecule organic depressants have a stronger depressing ability but poorer selectivity, which are usually used in combination with inorganic depressants. Generally speaking, the depressing mechanism of the two kinds of depressants is mainly to form a hydrophilic film on the surface of galena through physical or chemical adsorption. With more and more attention being paid to sustainable development and environmental protection, green and efficient galena depressants have become the key research direction in the field of mineral processing.

  • 加载中
  • [1] 胡志凯, 于洋, 陈经华.西藏某铜铅锌多金属矿选矿试验研究[J].矿冶工程, 2016, 36(6):46-50.

    Google Scholar

    [2] 庞雪敏, 危刚, 田江涛.西藏某铜铅锌银多金属矿选矿试验研究[J].中国矿业, 2019, 28(1):156-163.

    Google Scholar

    [3] 陈海亮, 崔毅琦, 童雄.硫化铜铅矿物浮选分离的研究现状及进展[J].矿冶, 2016, 25(1):13-16.

    Google Scholar

    [4] Okada S., Majima H.. Depressive action of chromate and dichromate salts on galena [J]. Can. Metall. Quart., 1971, 10: 89-95.

    Google Scholar

    [5] 姜永智, 李国栋.西北某难选铅锌矿石浮选试验[J].金属矿山, 2014(9):60-63.

    Google Scholar

    [6] 闫德利.安徽某矿山铜铅分离选矿试验[J].现代矿业, 2019(5):186-190.

    Google Scholar

    [7] 倪章元, 王贤兴.新疆某难选铜、铅、锌多金属矿的选矿工艺研究[J].矿冶工程, 2003, 23(2):30-32.

    Google Scholar

    [8] Bulatovic S., Wysouzil D. M., Bermejo F. C.. Development and introduction of a new copper/lead separation method in the Raura plant(Peru)[J]. Minerals Engineering, 2001, 14(11): 1483-1491.

    Google Scholar

    [9] 邱廷省, 吴昊, 严华山, 等.江西某铜铅锌多金属硫化矿浮选试验研究[J].有色金属(选矿部分), 2016(4):5-11

    Google Scholar

    [10] 周晓文, 罗仙平, 龚恩民.从某铅锌矿铅精矿中分选铜的试验研究[J].金属矿山, 2010(2):69-73.

    Google Scholar

    [11] 张一超, 刘全军, 袁华伟, 等.云南某铜铅硫化矿石选矿试验[J].金属矿山, 2016(7):125-128.

    Google Scholar

    [12] 张小田, 陈宏, 代淑娟.铜、铅、锌、铁复杂多金属矿综合回收研究[J].有色矿冶, 2005(6):17-19.

    Google Scholar

    [13] 李江涛, 库建刚, 黄加能.亚硫酸钠在铜铅分离浮选中的应用[J].中国矿业, 2007, 16(10):74-76.

    Google Scholar

    [14] 王中生, 郭月琴.CMC在铜铅分离浮选中的应用[J].矿产保护与利用, 2002(1):30-32.

    Google Scholar

    [15] 陈晓芳.福建某银多金属矿铜铅分离试验研究[J].有色金属(选矿部分), 2015(1):49-53.

    Google Scholar

    [16] 冷相超, 李运强.某铜铅锌多金属硫化矿石选矿试验[J].金属矿山, 2018(5):88-93.

    Google Scholar

    [17] 卜勇杰, 刘润清, 孙伟, 等.新型组合抑制剂在低品位铜铅硫化矿浮选分离中的应用[J].矿冶工程, 2013, 33(5):50-53.

    Google Scholar

    [18] 康博文, 谢贤, 陈国举, 等.硫化铜铅矿物分离过程铅抑制剂的研究现状与进展[J].金属矿山, 2018, (10):104-109.

    Google Scholar

    [19] GüL A., YüCE A.E., SIRKECI A.A., ÖZER M.. Use of non-toxic depressants in the selective flotation of copper-lead-zinc ores[J]. Canadian Metallurgical Quarterly, 2013, 47(2): 111-118.

    Google Scholar

    [20] 刘润清, 郭衍哲, 江峰.亚硫酸在黄铜矿和方铅矿浮选分离中的作用研究[J].矿冶工程, 2014, 34(8):104-107.

    Google Scholar

    [21] 魏明安, 孙传尧.硫化铜、铅矿物浮选分离研究现状及发展趋势[J].矿冶, 2008, 17(2):7-16.

    Google Scholar

    [22] 张锦林, 李朝晖, 王德海.难选铜、铅、锌多金属硫化矿选矿工艺的探讨[J].中国有色冶金, 2004(4):68-72.

    Google Scholar

    [23] 乔吉波, 文书明, 王少东.登高某铜铅矿选矿工艺试验研究[J].矿业研究与开发, 2012, 32(4):47-50.

    Google Scholar

    [24] 杨绍晶, 刘全军, 罗帅.云南某含银铜铅混合精矿分离试验研究[J].贵金属, 2019, 40(2):19-25.

    Google Scholar

    [25] 鲁军.复杂锌多金属矿浮选试验研究[J].有色金属(选矿部分), 2016(6):36-39.

    Google Scholar

    [26] 逢军武, 王立辉, 李磊, 等.西藏某高硫铜铅锌硫化矿浮选试验研究[J].中国矿业, 2016, 25(5):116-120.

    Google Scholar

    [27] 刘国晨.云南元阳某金多金属矿铜、铅分离浮选试验[J].现代矿业, 2018(4):86-89.

    Google Scholar

    [28] 王卫初.利用组合抑制剂进行铜铅分离的试验研究[J].有色矿山, 1999(2):35-38.

    Google Scholar

    [29] 米丽平, 孙春宝, 李青, 等.用组合抑制剂实现铜铅高效分离的试验研究[J].金属矿山, 2009(8):53-56.

    Google Scholar

    [30] 曾懋华, 姚亚萍, 奚长生, 等.某难选铜铅混合精矿的分离试验研究[J].金属矿山, 2006(4):19-22.

    Google Scholar

    [31] 梁溢强, 吕超.用于铜铅浮选分离的新型组合抑制剂研究[J].矿产保护与利用, 2019, 39(2):28-32.

    Google Scholar

    [32] 袁明华, 赵继春.铜铅混合精矿铜铅浮选分离试验研究[J].有色金属(选矿部分), 2008(5):5-7.

    Google Scholar

    [33] Tanriverdi M., Ozturk E..Use of sodium metabisulphide as an alternative depressant in selective notation of lead and copper[J]. Asian Journal of Chemistry, 2012, 24 (8): 3579-3581.

    Google Scholar

    [34] Chen J.H., Li Y.Q., Chen Y.. Cu-S flotation separation via the combination of sodium humate and lime in a low pH medium [J]. Miner. Eng., 2011, 24: 58-63.

    Google Scholar

    [35] Huang P., Cao M.L., Liu Q.. Selective depression of pyrite with chitosan in Pb-Fe sulfide flotation [J]. Miner. Eng., 2013, 46-47: 45-51.

    Google Scholar

    [36] 陈建华, 冯其明, 卢毅屏.新型铜铅分离有机抑制剂ASC的研究[J].矿产保护与利用, 2000(5):39-42.

    Google Scholar

    [37] 张泽强.新型抑制剂在铜铅浮选分离中的应用[J].武汉化工学院学报, 1998, (20):37-40.

    Google Scholar

    [38] Piao Z.J., Wei D.Z., Liu Z.L., et al. Selective depression of galena and chalcopyrite by O, O-bis(2, 3-dihydroxypropyl) dithiophosphate [J]. Trans. Nonferrous Met. Soc. China, 2013(23): 3063-3067.

    Google Scholar

    [39] Piao Z.J., Wei D.Z., Liu Z.L. Influence of sodium 2, 3-dihydroxypropyl dithiocarbonate on floatability of chalcopyrite and galena [J]. Trans. Nonferrous Met. Soc.China, 2014(24): 3343-3347.

    Google Scholar

    [40] 刘润清, 孙伟, 胡岳华.铜铅分离有机抑制剂FCLS的研究[J].矿冶工程, 2009, 29(3):29-32.

    Google Scholar

    [41] Liu M.F., Zhang C.Y., Hu B, et al. Enhancing flotation separation of chalcopyrite and galena by the surface synergism between sodium sulfite and sodium lignosulfonate [J]. Applied Surface Science, 2020, 507: 145042.

    Google Scholar

    [42] Wang X.J., Qin W.Q., Jiao F., et al. Inhibition of galena flotation by humic acid: Identification of the adsorption site for humic acid on moderately oxidized galena surface[J]. Minerals Engineering, 2019, 137: 102-107.

    Google Scholar

    [43] Liu R.Z., Qin W.Q., Jiao F., et al. Flotation separation of chalcopyrite from galena by sodium humate and ammonium persulfate [J]. Trans. Nonferrous Met. Soc. China, 2016, 26(1): 265-271.

    Google Scholar

    [44] 李晔, 彭勇军, 刘奇, 等.多糖在硫化矿浮选中的应用及其作用攻击力[J].武汉化工学院学报, 1998, 20(2):39-43.

    Google Scholar

    [45] Alejandro L.V., Luis A.L.L., Aurora R.C., et al. Carboxymethylcellulose (CMC) as PbS depressant in the processing of Pb-Cu bulk concentrates, adsorption and floatability studies [J]. Miner. Eng., 2017, 112: 77-83.

    Google Scholar

    [46] Drzymala J., Kapusniak J., Tomasik P.. Removal of lead minerals from copper industrial flotation concentrates by xanthate flotation in the presence of dextrin.International Journal of Mineral Processing, 2003(70): 147-155.

    Google Scholar

    [47] Dolivo Dobrovoskii V. V., Rogachevskaia V. A.. Depression action of some highmolecular organic compounds on sulfide minerals.Obogashchenie Rud, 1998, (1): 30-40.

    Google Scholar

    [48] LIU Q., LASKOWSK J.S.. The Role of Metal Hydroxides at Mineral Surfaces in Dextrin Adsorption, Ⅱ. Chalcopyrite-Galena Separations in the Presence of Dextrin[J]. Int. J. Miner. Process, 1989 (27): 147-155.

    Google Scholar

    [49] 邱仙辉, 孙传尧, 于洋.磷酸酯淀粉在黄铜矿及方铅矿表面吸附研究[J].有色金属:选矿部分, 2014(3):86-90.

    Google Scholar

    [50] Wonder Chimonyo, Brenton Fletcher, Yongjun Peng. The differential depression of an oxidized starch on the flotation of chalcopyrite and graphite[J]. Miner. Eng., 2020, 146: 106114.

    Google Scholar

    [51] Drzymala J., Kapusniak J., Tomasik P.. Removal of lead minerals from copper industrial flotation concentrates by xanthate flotation in the presence of dextrin[J].Int. J. Miner. Process, 2003, 70(4): 147-155.

    Google Scholar

    [52] Qin W.Q., Wei Q., Jiao F., et al. Utilization of polysaccharides as depressants for the flotation separation of copper/lead concentrate [J]. International Journal of Mining Science and Technology, 2013, 23: 179-186.

    Google Scholar

    [53] Liu Q., Zhang Y.H.. Effect of calcium ions and citric acid on the flotation separation of chalcopyrite from galena using dextrin [J]. Miner. Eng., 2000, 13: 1405-1416.

    Google Scholar

    [54] 齐丁丁, 李治华, 胡熙庚.用聚丙烯酸钠分离黄铜矿和方铅矿[J].矿冶工程, 1991, 11(3):32-34.

    Google Scholar

    [55] Wang K.P., Wang L., Cao M.L., et al.. Xanthation-modified polyacrylamide and spectroscopic investigation of its adsorption onto mineral surfaces [J]. Miner. Eng., 2012, 39:1-8.

    Google Scholar

    [56] Huang P., Wang L., Liu Q.. Depressant function of high molecular weight polyacrylamide in the xanthate flotation of chalcopyrite and galena [J]. Int. J. Miner. Process., 2014, 128: 6-15.

    Google Scholar

    [57] 钱志博, 吴卫国, 张行荣.新型铅抑制剂在铜铅分离中的抑制作用及机理研究[J].有色金属(选矿部分), 2018(1):100-105.

    Google Scholar

    [58] 钱志博, 吴卫国, 张行荣, 等.新型环保有机铅抑制剂在硫化铜铅分离中的应用[J].有色金属(选矿部分), 2018(5):105-110.

    Google Scholar

    [59] Zhang X.R., Qian Z.B., Zheng G.B., et al. The design of a macromolecular depressant for galena based on DFT studies and its application [J]. Miner. Eng., 2017, 112: 50-56.

    Google Scholar

    [60] Zhang X.R., Zhu Y.G., Zheng G.B., et al. An investigation into the selective separation and adsorption mechanism of a macromolecular depressant in the galena-chalcopyrite system [J]. Miner. Eng., 2019, 134: 291-299.

    Google Scholar

    [61] 邬顺科, 戴晶平, 刘运财.易浮难分离的铜铅锌硫化矿石浮选工艺优化研究[J].国外金属矿选矿, 2006, 43(10):21-24.

    Google Scholar

    [62] 王晓慧, 梁友伟, 张丽军.云南某铜铅锌多金属硫化矿石浮选试验[J].金属矿山, 2015(10):80-84.

    Google Scholar

    [63] 林榜立, 蒋茂林, 蔡振波.新型无毒铜铅分离有机抑制剂FY09的合成及性能研究[J].有色金属(选矿部分), 2017(5):83-88.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1873) PDF downloads(406) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint