Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 2
Article Contents

Ning Jiangfeng, Li Maolin, Cui Rui, Yao Wei, Chen Qiushi, Jiang Hongqiang. Effect of Grinding Method on Particle Morphology and Flotation Behavior of Calcite[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 51-55. doi: 10.13779/j.cnki.issn1001-0076.2020.02.007
Citation: Ning Jiangfeng, Li Maolin, Cui Rui, Yao Wei, Chen Qiushi, Jiang Hongqiang. Effect of Grinding Method on Particle Morphology and Flotation Behavior of Calcite[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 51-55. doi: 10.13779/j.cnki.issn1001-0076.2020.02.007

Effect of Grinding Method on Particle Morphology and Flotation Behavior of Calcite

  • Grinding is the prerequisite for successful flotation separation. Based on the grinding test, the single mineral flotation test, the wettability test and the scanning electron microscope test, the effects of ceramic rod grinding and ceramic ball grinding on surface morphology and flotation behavior of calcite were studied. The results showed that calcite mineral particles treated by ceramic ball grinding have higher hydrophobicity, better flotation recovery, greater flatness and elongation, and smaller roundness and relative width than those treated by ceramic rod grinding.

  • 加载中
  • [1] Wang X H, Xie Y. The Effect of Grinding Media and Environment on the Surface Properties and Flotation Behaviour of Sulfide Minerals[J]. Mineral Processing and Extractive Metallurgy Review, 1990, 7(1):49-79. doi: 10.1080/08827509008952666

    CrossRef Google Scholar

    [2] Li C W, Gao Z Y. Effect of grinding media on the surface property and flotation behavior of scheelite particles[J]. Powder Technology, 2017, 322:386-392. doi: 10.1016/j.powtec.2017.08.066

    CrossRef Google Scholar

    [3] Hi yilmaz C, Ulusoy U, Yekeler M. Effects of the shape properties of talc and quartz particles on the wettability based separation processes[J]. Applied Surface Science, 2004, 233(1):204-212.

    Google Scholar

    [4] Xia W. Role of particle shape in the floatability of mineral particle:An overview of recent advances[J]. Powder Technology, 2017, 317:104-116. doi: 10.1016/j.powtec.2017.04.050

    CrossRef Google Scholar

    [5] Allan G C, Woodcock J T. A review of the flotation of native gold and electrum[J]. Minerals Engineering, 2001, 14(9):931-962. doi: 10.1016/S0892-6875(01)00103-0

    CrossRef Google Scholar

    [6] 孙伟,陈臣,唐鸿鹄.碳酸根对方解石浮选速率的影响及机理研究[J].中国矿业大学学报,2012,41(1):48-51.

    Google Scholar

    [7] 王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1988:116.

    Google Scholar

    [8] Chau T T, Bruckard W J, Koh P T, et al. A review of factors that affect contact angle and implications for flotation practice[J]. Advances in Colloid & Interface Science, 2009, 150(2):106-115. doi: 10.1016/j.cis.2009.07.003

    CrossRef Google Scholar

    [9] Gao Y, Gao Z, Sun W, et al. Selective flotation of scheelite from calcite:A novel reagent scheme[J]. International Journal of Mineral Processing, 2016, 154(154):10-15.

    Google Scholar

    [10] Liu W, Zhang J, Wang W, et al. Flotation behaviors of ilmenite, titanaugite, and forsterite using sodium oleate as the collector[J]. Minerals Engineering, 2015, 72:1-9. doi: 10.1016/j.mineng.2014.12.021

    CrossRef Google Scholar

    [11] Lu Y, Drelich J, Miller J D. Wetting of francolite and quartz and its significance in the flotation of phosphate rock[J]. Minerals Engineering, 1997, 10(11):1219-1231. doi: 10.1016/S0892-6875(97)00108-8

    CrossRef Google Scholar

    [12] Bruno M, Massaro F R, Pastero L, et al. New Estimates of the Free Energy of Calcite/Water Interfaces for Evaluating the Equilibrium Shape and Nucleation Mechanisms[J]. Crystal Growth & Design, 2013, 13(3):1170-1179. doi: 10.1021/cg3015817

    CrossRef Google Scholar

    [13] Yekeler M, Ulusoy U, Hiyilmaz C. Effect ofparticle shape and roughness of talc mineral ground bydifferent mills on the wettability and floatability[J]. Powder Technology, 2004, 140(1-2):68-78. doi: 10.1016/j.powtec.2003.12.012

    CrossRef Google Scholar

    [14] Guven O, Karakas F, Kodrazi N, et al. Dependence of morphology on anionic flotation of alumina[J]. International Journal of Mineral Processing, 2016, 156:69-74. doi: 10.1016/j.minpro.2016.06.006

    CrossRef Google Scholar

    [15] Aslani M R, Rezai B. Influence of particles shape characteristics of galena on their flotability under the flotation behavior[C]. 8th International Scientific Conference on Modern Management of Mine Producing, Geology and Environmental Protection, 2008, 1:457-464.

    Google Scholar

    [16] Fosu S, Skinner W, Zanin M. Detachment of coarse composite sphalerite particles from bubbles in flotation:Influence of xanthate collector type and concentration[J]. Minerals Engineering, 2015, 71(1):73-84.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(1544) PDF downloads(26) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint