Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 2
Article Contents

Song Siyu, Gu Guohua, Wang Yanhong, Fang Tianran. The Structure Property of Clay Minerals and Their Effects on Flotation[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 43-50. doi: 10.13779/j.cnki.issn1001-0076.2020.02.006
Citation: Song Siyu, Gu Guohua, Wang Yanhong, Fang Tianran. The Structure Property of Clay Minerals and Their Effects on Flotation[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 43-50. doi: 10.13779/j.cnki.issn1001-0076.2020.02.006

The Structure Property of Clay Minerals and Their Effects on Flotation

More Information
  • Corresponding author: Wang Yanhong  
  • Clay minerals are phyllosilicate minerals, with kaolinite and montmorillonite as two typical common gangue minerals, which are the major challenges in the flotation of low-grade minerals. This paper analyzes the effect of clay mineral structure and physicochemical properties on flotation and the mechanism, and summarizes common treatment methods for clay ore in flotation and mechanisms. Because of the surface electricity, clay minerals dispersed in water will be hydrated, swell and finally peel off into layers. These layers will form different aggregations, which will affect flotation, clay minerals dispersed in water will hydrate, swell and finally peel off into layers, form different aggregates, which will affect flotation by changing the rheological properties of pulp. Clay minerals also affect the interaction between mineral particles, resulting in slime coating and mechanical entrainment. Physical methods of clay treatment include pre-desliming, high shear mixing, ultrasonic pretreatment, etc.; chemical methods include adding clay inhibitor and using electrolyte solution, etc. The effect of clay minerals in flotation and treatment methods are summarized, which is helpful to provide technical reference for the research of flotation technology with high clay content, and to put forward the future research content and direction in this field.

  • 加载中
  • [1] 杨畅.黏土泥化抑制对煤泥水沉降性能影响研究[D].徐州:中国矿业大学,2016.

    Google Scholar

    [2] 梁龙.煤泥中黏土矿物的选择性团聚机理研究[D].徐州:中国矿业大学,2017.

    Google Scholar

    [3] Jeldres R I, Uribe L, Cisternas L A, et al. The effect of clay minerals on the process of flotation of copper ores-a critical review[J]. Applied Clay Science, 2019, 170:57-69. doi: 10.1016/j.clay.2019.01.013

    CrossRef Google Scholar

    [4] Schoonheydt R A, Johnston C T. Chapter 3 surface and interface chemistry of clay minerals[J]. Developments in Clay science, 2006, 5:87-113.

    Google Scholar

    [5] Lagaly G, Ogawa M, Dékány, I. Chapter 7.3 Clay mineral organic interactions[M]. Developments in Clay Science. Elsevier Ltd, 2006.

    Google Scholar

    [6] 杨宗义,刘文礼,焦小淼,等.蒙脱石分散体系中用Zeta电位修正静电作用能的计算[J].煤炭学报,2017(6):1572-1578.

    Google Scholar

    [7] 刘晓文.一水硬铝石和层状硅酸盐矿物的晶体结构与表面性质研究[D].长沙:中南大学,2003.

    Google Scholar

    [8] Low P F. The swelling of clay:II. montmorillonites[J]. Soil Science Society of America Journal, 1980, 44(4):667-676 doi: 10.2136/sssaj1980.03615995004400040001x

    CrossRef Google Scholar

    [9] OLPHEN, Van H. An introduction to clay colloid chemistry[J]. Soil Science, 1964, 97(4):290.

    Google Scholar

    [10] 杨宗义.煤泥水体系中抑制蒙脱石膨胀分散的量子化学研究[D].北京:中国矿业大学(北京),2018.

    Google Scholar

    [11] 严昊炜,崔家瑞,张泽朋.层间阳离子对蒙脱石凝胶性能的影响[J].中国粉体技术,2019(3):48-54.

    Google Scholar

    [12] Kittrick J A. Interlayer forces in montmorillonite and vermiculite[J]. Soil Sci Soc Amer proc, 1969, 33(2):217-222. doi: 10.2136/sssaj1969.03615995003300020017x

    CrossRef Google Scholar

    [13] 孙红娟,彭同江,陈彦翠.层间阳离子对蒙脱石结构与水化膨胀性能的影响[J].非金属矿,2011(1):11-13. doi: 10.3969/j.issn.1000-8098.2011.01.004

    CrossRef Google Scholar

    [14] Norrish K, Quirk J P. Crystalline swelling of montmorillonite:use of electrolytes to control swelling[J]. Nature, 1954, 173(4397):255-256. doi: 10.1038/173255a0

    CrossRef Google Scholar

    [15] 韩秀山.膨润土(蒙脱石)阳离子的交换容量——CEC[J].矿产保护与利用,2007(2):16. doi: 10.3969/j.issn.1001-0076.2007.02.015

    CrossRef Google Scholar

    [16] Nye P H. The measurement and mechanism of ion diffusion in soil:I. The relation between self-diffusion and bulk diffusion[J]. European Journal of Soil Science, 1966, 17(1):16-23.

    Google Scholar

    [17] Charles D. Shackelford, David E. Daniel. Diffusion in saturated soil. I:background[J]. 1991, 117(3):467-484.

    Google Scholar

    [18] Sparks, Donald L. Soil physical chemistry[J]. Soil Science, 1988, 145(3):231-232. doi: 10.1097/00010694-198803000-00012

    CrossRef Google Scholar

    [19] 靳朝辉.离子交换动力学的研究[D].天津:天津大学,2004.

    Google Scholar

    [20] 杜伟.极化效应对黏土矿物中离子交换吸附的影响[D].重庆:西南大学,2017.

    Google Scholar

    [21] Senior G D, Thomas S A. Development and implementation of a new flowsheet for the flotation of a low grade nickel ore[J]. International Journal of Mineral Processing, 2005, 78(1):49-61. doi: 10.1016/j.minpro.2005.08.001

    CrossRef Google Scholar

    [22] Schubert H. On the optimization of hydrodynamics in fine particle flotation[J]. Minerals Engineering, 2008, 21(12-14):930-936. doi: 10.1016/j.mineng.2008.02.012

    CrossRef Google Scholar

    [23] Ndlovu B, Becker M, Forbes E, et al. The influence of phyllosilicate mineralogy on the rheology of mineral slurries[J]. Minerals Engineering, 2011, 24(12):1314-1322. doi: 10.1016/j.mineng.2011.05.008

    CrossRef Google Scholar

    [24] He, M.Z., Wang, Y.M., Forssberg, E. Slurry rheology in wet ultrafine grinding of industrial minerals:a review[J]. Powder Technol, 2004, 147(1):94-112.

    Google Scholar

    [25] 张鹏,吴志超,敖华军.污泥的黏度与浓度、温度三者关系式的实验推导[J].环境污染治理技术与设备,2006(3):72-74.

    Google Scholar

    [26] He M, Wang Y, Forssberg E. Slurry rheology in wet ultrafine grinding of industrial minerals:a review[J]. Powder Technology, 2004, 147(1-3):94-112. doi: 10.1016/j.powtec.2004.09.032

    CrossRef Google Scholar

    [27] Philippe A M, Baravian C, Bezuglyy V, et al. Rheological study of two-dimensional very anisometric colloidal particle suspensions:from shear-Induced orientation to viscous dissipation[J]. Langmuir, 2013, 29(17):5315-5324. doi: 10.1021/la400111w

    CrossRef Google Scholar

    [28] Vali H, Bachmann L. Ultrastructure and flow behavior of colloidal smectite dispersions[J]. Journal of Colloid & Interface Science, 1988, 126(1):278-291. doi: 10.1016/0021-9797(88)90122-1

    CrossRef Google Scholar

    [29] 王琛,刘润清,孙伟,等.高泥氧化锌矿脱泥/不脱泥浮选对矿浆流变性能的影响[J].矿冶工程,2018(5):44-47. doi: 10.3969/j.issn.0253-6099.2018.05.011

    CrossRef Google Scholar

    [30] Van Olphen H, Hsu P H. An introduction to clay colloid chemistry[J]. Soil Science, 1978, 126(1):59.

    Google Scholar

    [31] Nestor Cruz, Yongjun Peng, Elaine Wightman, Ning Xu.The interaction of clay minerals with gypsum and its effects on copper-gold flotation[J]. Minerals Engineering, 2015, 77:121-130. doi: 10.1016/j.mineng.2015.03.010

    CrossRef Google Scholar

    [32] Zhang M, Peng Y. Effect of clay minerals on pulp rheology and the flotation of copper and gold minerals[J]. Minerals Engineering, 2015, 70:8-13. doi: 10.1016/j.mineng.2014.08.014

    CrossRef Google Scholar

    [33] Mouzon J, Bhuiyan I U, Hedlund J. The structure of montmorillonite gels revealed by sequential cryo-XHR-SEM imaging[J]. Journal of Colloid & Interface Science, 2016, 465:58-66. doi: 10.1016/j.jcis.2015.11.031

    CrossRef Google Scholar

    [34] 王冉.黏土泥化抑制对煤泥浮选的影响[D].徐州:中国矿业大学,2015.

    Google Scholar

    [35] Wang Y, Peng Y, Nicholson T, et al. The different effects of bentonite and kaolin on copper flotation[J]. Applied clay Science, 2015, 114(sep.):48-52. doi: 10.1016/j.clay.2015.05.008

    CrossRef Google Scholar

    [36] Farrokhpay S, Zanin M. An investigation into the effect of water quality on froth stability[J]. Advanced Powder Technology, 2012, 23(4):493-497.

    Google Scholar

    [37] 于跃先.煤泥浮选颗粒间相互作用及对浮选影响研究[D].北京:中国矿业大学(北京),2018.

    Google Scholar

    [38] Kirjavainen V M. Application of a probability model for the entrainment of hydrophilic particles in froth flotation[J]. International Journal of Mineral Processing, 1989, 27(1-2):63-74. doi: 10.1016/0301-7516(89)90006-9

    CrossRef Google Scholar

    [39] Holuszko M E, Franzidis J P, Manlapig E V, et al. The effect of surface treatment and slime coatings on ZnS hydrophobicity[J]. Minerals Engineering, 2008, 21(12-14):958-966. doi: 10.1016/j.mineng.2008.03.006

    CrossRef Google Scholar

    [40] Liu D, Peng Y. Reducing the entrainment of clay minerals in flotation using tap and saline water[J]. Powder Technology, 2014, 253:216-222. doi: 10.1016/j.powtec.2013.11.019

    CrossRef Google Scholar

    [41] Zhi-li Li, Feng Rao, Shao-xian Song, Yan-mei Li, Wen-biao Liu. Slime coating of kaolinite on chalcopyrite in saline water flotation[J]. International Journal of Minerals Metallurgy and Materials, 2018, (5):481-488.

    Google Scholar

    [42] Warren L J. Determination of the contributions of true flotation and entrainment in batch flotation tests[J]. International Journal of Mineral Processing, 1985, 14(1):33-44. doi: 10.1016/0301-7516(85)90012-2

    CrossRef Google Scholar

    [43] 于跃先,马力强,张仲玲,等.煤泥浮选过程中的细泥夹带与罩盖机理[J]. 煤炭学报,2015(3):652-658.

    Google Scholar

    [44] Y·S·楚,周高云,雨田.浮选起泡剂对气泡大小和泡沫稳定性的影响[J].国外金属矿选矿,2002(9):17-21.

    Google Scholar

    [45] Farrokhpay S, Ndlovu B, Bradshaw D. Behaviour of swelling clays versus non-swelling clays in flotation[J]. Minerals Engineering, 2016, 96:59-66.

    Google Scholar

    [46] Wang Y, Peng Y, Nicholson T, et al. The different effects of bentonite and kaolin on copper flotation[J]. Applied Clay Science, 2015, 114(sep.):48-52. doi: 10.1016/j.clay.2015.05.008

    CrossRef Google Scholar

    [47] 谢宝华.含镁硅酸盐矿物间相互作用及其对硫化矿浮选的影响研究[D].长沙:中南大学,2014.

    Google Scholar

    [48] Cruz N, Peng Y, Farrokhpay S, et al. Interactions of clay minerals in copper-gold flotation:Part 1-Rheological properties of clay mineral suspensions in the presence of flotation reagents[J]. Minerals Engineering, 2013, 50-51:30-37. doi: 10.1016/j.mineng.2013.06.003

    CrossRef Google Scholar

    [49] 向磊.浮选药剂浓度对不同粒径煤浮选效果的影响[D].重庆:重庆大学,2018.

    Google Scholar

    [50] Bulatovic S M. Handbook of Flotation Reagents:Chemistry, Theory and Practice Flotation of Sulfide Ores[J]. Chinese Journal of Chemical Engineering, 2008, 16(5):685-685.

    Google Scholar

    [51] Farrokhpay S, Bradshaw D. Effect of clay minerals on froth stability in mineral flotation:a review[C]. IMPC. 2012.

    Google Scholar

    [52] Oats W J, Ozdemir O, Nguyen A V. Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation[J]. Minerals Engineering, 2010, 23(5):413-419. doi: 10.1016/j.mineng.2009.12.002

    CrossRef Google Scholar

    [53] 唐敏,张文彬.微细粒蛇纹石矿泥在含铂钯铜镍硫化矿浮选中的影响[J].中国矿业,2008(4):66-69. doi: 10.3969/j.issn.1004-4051.2008.04.020

    CrossRef Google Scholar

    [54] Bulatovic S M, Salter R S. High intensity conditioning-a new approach to improving flotation of mineral slimes[M]. Processing of Complex Ores. Pergamon, 1989:169-181.

    Google Scholar

    [55] Yu Y, Ma L, Wu L, et al. The role of surface cleaning in high intensity conditioning[J]. Powder Technology, 2017, 319:26-33. doi: 10.1016/j.powtec.2017.06.048

    CrossRef Google Scholar

    [56] 马力强,韦鲁滨,江兴华,等.调浆剪切强度对煤泥浮选的影响[J].煤炭学报,2013(1):140-144.

    Google Scholar

    [57] 唐超.超声预处理对煤泥浮选过程的强化作用研究[D].徐州:中国矿业大学,2014.

    Google Scholar

    [58] Gurpinar G, Sonmez E, Bozkurt V. Effect of ultrasonic treatment on flotation of calcite, barite and quartz[J]. Mineral Processing & Extractive Metallurgy, 2004, 113(2):91-95. doi: 10.1179/037195504225005796

    CrossRef Google Scholar

    [59] 韩永华.高岭石、蒙脱石表面性质及其分散机理的量子化学研究[D].北京:中国矿业大学(北京),2017.

    Google Scholar

    [60] 徐东方,朱书全,曹国强.煤泥浮选过程中六偏磷酸钠对蒙脱石分散行为影响[J]. 煤炭学报,2016,41(S1):192-198.

    Google Scholar

    [61] 方启学.钙镁对微细矿粒分散稳定性的影响及其机理研究[J].国外金属矿选矿,1998(6):42-45.

    Google Scholar

    [62] 李亚峰,金亚斌,刘元.Ca~(2+)等3种成分在煤泥凝聚中作用机理的研究[J].沈阳建筑大学学报:自然科学版,2007(3):473-477.

    Google Scholar

    [63] Klassen, V.I., Mokrousov, V.A. An introduction to the theory of flotation, second ed[M]. Butterworths, London, 1963.

    Google Scholar

    [64] Wang Yanhong. Mitigating the deleterious effect of clay minerals on copper flotation[D]. Queensland:The University of Queensland, 2016.

    Google Scholar

    [65] 中华人民共和国水利部.2017年度中国水资源公报[M].北京:中国水利水电出版社,2018.

    Google Scholar

    [66] 闫善郁,王洪德.矿山废水控制与处理[J].煤矿安全,2005(7):27-29. doi: 10.3969/j.issn.1003-496X.2005.07.010

    CrossRef Google Scholar

    [67] 阎文庆,朱日来.苦咸水、海水在国内外矿业中的应用[J].中国矿业,2016,(10):81-87,113. doi: 10.3969/j.issn.1004-4051.2016.10.017

    CrossRef Google Scholar

    [68] Drelich J, Miller J D. Induction time measurements for air bubbles on chalcopyrite, bornite, and gold in seawater[C]. Water in Mineral Processing, 2012.

    Google Scholar

    [69] Lagaly G, Ziesmer S. Colloid chemistry of clay minerals:the coagulation of montmorillonite dispersions[J]. Advances in Colloid & Interface Science, 2003, 100(2):105-128.

    Google Scholar

    [70] 刘佳.金属阳离子对水溶液中蒙脱石膨胀性和凝聚的影响[D].武汉:武汉理工大学,2016.

    Google Scholar

    [71] 翟永功,次向明,邹星,等.药用蒙脱石黏土的矿物组成与化学成分分析[J].中草药,2002(4):5-7.

    Google Scholar

    [72] 孙红娟,彭同江,陈彦翠.层间阳离子对蒙脱石结构与水化膨胀性能的影响[J].非金属矿,2011(1):11-13. doi: 10.3969/j.issn.1000-8098.2011.01.004

    CrossRef Google Scholar

    [73] Zhang M, Peng Y, Xu N. The effect of sea water on copper and gold flotation in the presence of bentonite[J]. Minerals Engineering, 2015, 77:93-98. doi: 10.1016/j.mineng.2015.03.006

    CrossRef Google Scholar

    [74] Marrucci G, Nicodemo L. Coalescence of gas bubbles in aqueous solutions of inorganic electrolytes[J]. Chemical Engineering Science, 1967, 22(9):1257-1265. doi: 10.1016/0009-2509(67)80190-8

    CrossRef Google Scholar

    [75] K.C. Corin, A. Reddy, L. Miyen. The effect of ionic strength of plant water on valuable mineral and gangue recovery in a platinum bearing ore from the Merensky reef[J]. Minerals Engineering, 2011, 24(2):131-137.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(1751) PDF downloads(38) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint