Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 2
Article Contents

Wang Yubin, Wang Yan, Wen Kan, Li Shuqin, Yu Bo. Electrochemical Pretreatment to Improve the Inhibition Effect of Citric Acid on Muscovite[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 36-42. doi: 10.13779/j.cnki.issn1001-0076.2020.02.005
Citation: Wang Yubin, Wang Yan, Wen Kan, Li Shuqin, Yu Bo. Electrochemical Pretreatment to Improve the Inhibition Effect of Citric Acid on Muscovite[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 36-42. doi: 10.13779/j.cnki.issn1001-0076.2020.02.005

Electrochemical Pretreatment to Improve the Inhibition Effect of Citric Acid on Muscovite

More Information
  • The pure mineral flotation experiment of muscovite was carried out by using citric acid before and after electrochemical pretreatment, and the samples were characterized by XPS, Zeta potential and FITR. On this basis, the mechanism of electrochemical pretreatment of citric acid and muscovite flotation behavior under the sodium oleate system was investigated. The results indicated that electrochemical pretreatment could improve the separation effect of citric acid on muscovite. The muscovite recovery of only 3.4% was obtained by the electrochemical pretreatment of the citric acid solution with the concentration of 2.38×10-6 mol/L under the pulp condition of pH value of 7 and sodium oleate concentration of 9.20×10-4 mol/L. The phenomenon that the citric acid can enhance the floatability of muscovite can be explained as follow:the electrochemical pretreatment can increase the degree of hydrolysis and ionization of citric acid. The adsorption of the C6H7O7- and C6H6O72- on the surface of muscovite was enhanced, which correspondingly weakened the electrostatic adsorption of oleate on the surface of mica, resulting in the decrease in the floatability of muscovite. The study can provide a new idea to improve the separation efficiency of muscovite, and also provide a reference for the application of electrochemical pretreatment reagent in flotation.

  • 加载中
  • [1] 赵军伟,姚卫红,王虎.硫化矿浮选电化学研究现状[J].矿产保护与利用,2003(4):32-36. doi: 10.3969/j.issn.1001-0076.2003.04.010

    CrossRef Google Scholar

    [2] 李宁钧.硫化矿浮选电化学的理论研究状况[J].中国有色金属,2011(S1):68-70.

    Google Scholar

    [3] 赵敏捷,方建军,李国栋.硫化铜矿电化学调控浮选应用与研究进展[J].矿冶,2016(5):15-18. doi: 10.3969/j.issn.1005-7854.2016.05.004

    CrossRef Google Scholar

    [4] Zhou G Y, Li W J, Chen Y, et al. Study on recovery of lead-zinc tailing ore by electrochemical flotation[J]. Applied Mechanics and Materials 2014, 675-677:1451-1454.

    Google Scholar

    [5] 张威,王宇斌,余乐,等.用电化学调控浮选方法提高某难选镍矿选矿指标[J].金属矿山,2015(5):93-96. doi: 10.3969/j.issn.1001-1250.2015.05.021

    CrossRef Google Scholar

    [6] Smith, L.K., Bruckard, W.J. These parathion of arsenic from copperina North parkes copper-gold ore using controlled-potential flotation[J]. International Journal of Mineral Processing. 2007(84):15-24.

    Google Scholar

    [7] 张剑锋.电化学调控浮选在梅山选矿厂的应用研究[J].金属矿山,2008(7):46-48,60. doi: 10.3321/j.issn:1001-1250.2008.07.014

    CrossRef Google Scholar

    [8] 王宇斌,王妍,朱新峰,等.基于电化学浮选的钨铋粗精矿分离研究[J].有色金属(选矿部分),2020(1):48-54. doi: 10.3969/j.issn.1671-9492.2020.01.009

    CrossRef Google Scholar

    [9] 安士杰.电化学控制浮选在乌拉嘎金矿生产中的应用[J].黄金,2001(11):36-39. doi: 10.3969/j.issn.1001-1277.2001.11.010

    CrossRef Google Scholar

    [10] 欧阳坚,陈洁.电化学预处理水玻璃的作用探讨[J].矿产综合利用,1989(5):46-50.

    Google Scholar

    [11] 方霖,郭珍旭,刘长淼,等.云母矿物浮选研究进展[J].中国矿业,2015(3):131-136. doi: 10.3969/j.issn.1004-4051.2015.03.029

    CrossRef Google Scholar

    [12] 王宇斌,文堪,张鲁.利用铜离子改善油酸钠体系下白云母的可浮性[J].矿产保护与利用,2017(6):45-51.

    Google Scholar

    [13] 王宇斌,文堪,王望泊.DL-苹果酸对白云母可浮性的抑制机理[J].矿产保护与利用,2018(3):117-123.

    Google Scholar

    [14] 王宇斌,余乐,张威.酸性条件下十二胺体系中Fe3+对白云母可浮性的影响[J].矿产保护与利用,2015(6):40-45.

    Google Scholar

    [15] 王宇斌,文堪,王望泊.柠檬酸对白云母可浮性的抑制机理[J].过程工程学报,2019,19(2):338-344.

    Google Scholar

    [16] LiuWei-jun, Zhang Jie, Wang Wei-qing, et al. Flotation behaviors of ilmenite, titanaugite, and forsterite using sodium oleate as the collector[J]. Minerals Engineering, 2015(72):1-9.

    Google Scholar

    [17] NáJERA J J. Phase transition behavior of sodium oleate aerosol particles[J]. Atmospheric Environment, 2007(5):1041-1052.

    Google Scholar

    [18] Meng Qing-you, Feng Qi-ming, Ou Le-ming. Effect of temperature on floatability and adsorption behavior of fine wolf ramite with sodium oleate[J]. Journal of Central South University, 2018(7):1582-1589.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(4)

Article Metrics

Article views(1131) PDF downloads(31) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint