Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 2
Article Contents

WANG Shuai, WANG Mingyue, YANG Jia, ZHONG Hong. Synthesis and Application of Organophosphorus Reagents For Mineral Processing and Metallurgy[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 1-9. doi: 10.13779/j.cnki.issn1001-0076.2020.02.001
Citation: WANG Shuai, WANG Mingyue, YANG Jia, ZHONG Hong. Synthesis and Application of Organophosphorus Reagents For Mineral Processing and Metallurgy[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 1-9. doi: 10.13779/j.cnki.issn1001-0076.2020.02.001

Synthesis and Application of Organophosphorus Reagents For Mineral Processing and Metallurgy

  • Organophosphorus mineral processing and metallurgical reagents have flexible and variable polar and nonpolar groups, which makes them have adjustable and controllable performance and wide application prospects. The structural characteristics and synthesis methods of organophosphorus reagents, including alkylphosphate, alkylphosphonic acid, alkylphosphonate, alkylphosphonous acid, dialkylphosphinic acid, dialkylphosphinate, trialkylphosphine oxide, dialkyl dithiophosphoric acid, dialkyl thiophosphinic acid and their derivatives, were introduced. The applications of the organophosphorus reagents in the field of mineral processing and metallurgical engineering, including collector, extractant, corrosion inhibitor, depressant and lixiviant, were also discussed. The ideas for the development of organophosphorus reagents were provided.

  • 加载中
  • [1] Pasek M A, Gull M, Herschy B, Phosphorylation on the early earth[J]. Chemical Geology, 2017, 475:149-170. doi: 10.1016/j.chemgeo.2017.11.008

    CrossRef Google Scholar

    [2] 林强,王淀佐.有机磷浮选剂[J].湖南有色金属,1989,5(1):16-20.

    Google Scholar

    [3] 师亚宁.十二烷基磷酸单酯的合成与性能研究[D].太原:中国日用化学工业研究院,2018.

    Google Scholar

    [4] 张辉,李效军.脱水磷酰氯法合成磷酸二异辛酯[J].化学试剂,2017,39(9):1003-1006.

    Google Scholar

    [5] Suresh A, Srinivasan T G, Vasudeva Rao P R. The effect of the structure of trialkyl phosphates on their physicochemical properties and extraction behavior[J]. Solvent Extraction and Ion Exchange, 2009, 27(2):258-294.

    Google Scholar

    [6] Maranescu B, Visa A, Ilia G, et al. Synthesis and structural characterization of 2-D layered copper(Ⅱ) styrylphosphonate coordination polymers[J]. Journal of Coordination Chemistry, 2014, 67(9):1562-1572. doi: 10.1080/00958972.2014.928289

    CrossRef Google Scholar

    [7] Kieczykowski G R, Jobson R B, Melillo D G, et al. Preparation of (4-amino-1-hydroxybutylidene)bisphosphonic acid sodium salt, MK-217(alendronate sodium). An improved procedure for the preparation of 1-hydroxy-1,1-bisphosphonic acids[J]. Journal of Organic Chemistry, 1995, 60(25):8310-8312. doi: 10.1021/jo00130a036

    CrossRef Google Scholar

    [8] Neu J, Fischer J, Fodor T, et al. Industrial process for the synthesis of 2-substituted 1-(hydroxy-ethylidene)-1,1-bisphosphonic acids of high purity and the salts thereof:US20060122395[P]. 2006-06-08.

    Google Scholar

    [9] 邓晓洋,王微宏,郭丹峰,等.N-(4-甲基苯基)-α-氨基苄基磷酸的合成及其浮选性能[J].应用化工,2012,41(10):1685-1688.

    Google Scholar

    [10] Wu M S, Chen R Y, Huang Y. Convenient synthesis of analogs of aminomethylene gem-diphosphonic acid from amines without catalyst[J]. Synthetic Communications, 2004, 34(8):1393-1398. doi: 10.1081/SCC-120030688

    CrossRef Google Scholar

    [11] 钟宏,李方旭,王帅,等.一种α-羟基不饱和烷基膦酸及其制备方法与浮选应用:201310571656.4[P].2014-03-05.

    Google Scholar

    [12] Li L Y, Xu S M, Ju Z J, et al. Dialkyl phosphinic acids:Synthesis and applications as extractant for nickel and cobalt separation[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(S1):205-210.

    Google Scholar

    [13] Huang K H, Jia Y, Wang S, et al. A novel method for the synthesis of styryl phosphonate monoester and its application in La (III) extraction[J]. Journal of Rare Earths, 2020, 38(6):649-656. doi: 10.1016/j.jre.2019.09.003

    CrossRef Google Scholar

    [14] Verbelen B, Dehaen W, Binnemans K. Selective substitution of POCl3 with organometallic reagents:Synthesis of phosphinates and phosphonates[J]. Synthesis, 2018, 50(10):2019-2026. doi: 10.1055/s-0037-1609435

    CrossRef Google Scholar

    [15] 王颖.二烷基次膦酸及三烷基氧化磷合成方法的改进[D].湘潭:湘潭大学,2012.

    Google Scholar

    [16] 徐庆华.二异丁基二硫代磷酸钠的合成研究[J].山东化工,2019,48(22):20-21. doi: 10.3969/j.issn.1008-021X.2019.22.008

    CrossRef Google Scholar

    [17] 于奉先,贾彩,吴王锁,等.二烷基二硫代次膦酸的合成[J].合成化学,2008,16(5):558-560. doi: 10.3969/j.issn.1005-1511.2008.05.016

    CrossRef Google Scholar

    [18] 孙青,冯其明,石晴.十二烷基磷酸酯钾在菱锌矿表面的吸附机理[J].中南大学学报(自然科学版),2018,49(8):1845-1850.

    Google Scholar

    [19] Liu W P, Wang Z X, Wang X M, et al. Smithsonite flotation with lauryl phosphate[J]. Minerals Engineering, 2020, 147:106155. doi: 10.1016/j.mineng.2019.106155

    CrossRef Google Scholar

    [20] Srinivas K, Sreenivas T, Padmanabhan N P H, et al. Studies on the application of alkyl phosphoric acid ester in the flotation of wolframite[J]. Mineral Processing and Extractive Metallurgy Review, 2004, 25(4):253-267. doi: 10.1080/08827500490472013

    CrossRef Google Scholar

    [21] Fan H L, Qin J Q, Liu J, et al. Investigation into the flotation of malachite, calcite and quartz with three phosphate surfactants[J]. Journal of Materials Research and Technology, 2019, 8(6):5140-5148. doi: 10.1016/j.jmrt.2019.08.037

    CrossRef Google Scholar

    [22] Zheng X P, Misra M, Smith R W, et al. Fersmite flotation with diphosphonic acid and other collectors[J]. Minerals Engineering, 1996, 9(3):331-341.

    Google Scholar

    [23] 宫贵臣,刘杰,韩跃新,等.苯乙烯膦酸在锡石(100)表面吸附的密度泛函理论研究[J].中南大学学报(自然科学版),2018,49(12):2901-2907. doi: 10.11817/j.issn.1672-7207.2018.12.001

    CrossRef Google Scholar

    [24] Liu Q, Peng Y J. The development of a composite collector for the flotation of rutile[J]. Minerals Engineering, 1999,12(12):1419-1430. doi: 10.1016/S0892-6875(99)00131-4

    CrossRef Google Scholar

    [25] Tan W, Liu G Y, Qin J Q, et al. Hemimorphite flotation with 1-hydroxydodecylidene-1,1-diphosphonic acid and its mechanism[J]. Minerals, 2018, 8(2):38. doi: 10.3390/min8020038

    CrossRef Google Scholar

    [26] Li F X, Zhong H, Xu H F, et al. Flotation behavior and adsorption mechanism of α-hydroxyoctyl phosphinic acid to malachite[J]. Minerals Engineering, 2015, 71:188-193. doi: 10.1016/j.mineng.2014.11.013

    CrossRef Google Scholar

    [27] Huang K H, Huang X P, Jia Y, et al. A novel surfactant styryl phosphonate mono-iso-octyl ester with improved adsorption capacity and hydrophobicity for cassiterite flotation[J]. Minerals Engineering, 2019, 142:105895. doi: 10.1016/j.mineng.2019.105895

    CrossRef Google Scholar

    [28] Zhong H, Huang Z R, Zhao G, et al. The collecting performance and interaction mechanism of sodium diisobutyl dithiophosphinate in sulfide minerals flotation[J]. Journal of Materials Research and Technology, 2015, 4(2):151-161. doi: 10.1016/j.jmrt.2014.12.003

    CrossRef Google Scholar

    [29] 沈纬,王英,傅洵.硫酸铝生产过程中的萃取法除铁[J].应用化学,2002,19(5):464-467. doi: 10.3969/j.issn.1000-0518.2002.05.013

    CrossRef Google Scholar

    [30] Khaironie M T, Masturah M, Meor Yusoff M S, et al. Solvent extraction of light rare earth ions using D2EHPA from nitric acid and sulphuric acid solutions[J]. Advanced Materials Research, 2014, 970:209-213. doi: 10.4028/www.scientific.net/AMR.970.209

    CrossRef Google Scholar

    [31] Wang J L, Xu S M, Li L Y, et al. Synthesis of organic phosphinic acids and studies on the relationship between their structure and extraction-separation performance of heavy rare earths from HNO3 solutions[J]. Hydrometallurgy, 2013, 137:108-114. doi: 10.1016/j.hydromet.2013.05.010

    CrossRef Google Scholar

    [32] Ahmadipour M, Rashchi F, Ghafarizadeh B, et al. Synergistic effect of D2EHPA and Cyanex 272 on separation of zinc and manganese by solvent extraction.[J]. Separation Science and Technology, 2011, 46(15):2305-2312. doi: 10.1080/01496395.2011.594848

    CrossRef Google Scholar

    [33] Modolo G, Odoj R. Influence of the purity and irradiation stability of Cyanex 301 on the separation of trivalent actinides from lanthanides by solvent extraction[J]. Journal of Radioanalytical and Nuclear Chemistry, 1998, 228(1-2):83-89. doi: 10.1007/BF02387304

    CrossRef Google Scholar

    [34] Devi N B, Mishra S. Solvent extraction equilibrium study of manganese(II) with Cyanex 302 in kerosene[J]. Hydrometallurgy, 2010, 103(1-4):118-123. doi: 10.1016/j.hydromet.2010.03.007

    CrossRef Google Scholar

    [35] Chandrasekar A, Sivaraman N, Ghanty T K, et al. Experimental evidence and quantum chemical insights into extraction and third phase aggregation trends in Ce(IV) organophosphates[J]. Separation and Purification Technology, 2019, 217:62-70. doi: 10.1016/j.seppur.2019.02.007

    CrossRef Google Scholar

    [36] 崔涛,徐庆鑫,袁野,等.采用磷酸三丁酯(TBP)从含锌烟尘氯化浸出液中萃取锌[J].矿冶,2019,28(5):65-68,102.

    Google Scholar

    [37] 石成龙,宋桂秀,秦亚茹,等.磷酸三丁酯/丁酸乙酯体系协同萃取提锂的研究[J].化学工程,2020,48(2):16-19,73. doi: 10.3969/j.issn.1005-9954.2020.02.004

    CrossRef Google Scholar

    [38] 李树森,袁承业.烷基膦酸二烷基酯萃取铀、钍反应中取代基效应的分子力学研究[J].原子能科学技术,1989,23(6):38-46.

    Google Scholar

    [39] Li K, Chen J, Zou D, et al. A novel extractant 2-ethylhexyl bis(2-ethylhexyl)phosphinate for cerium(IV) and fluorine extraction from nitric acid system[J]. Hydrometallurgy, 2019, 186:143-150. doi: 10.1016/j.hydromet.2019.04.014

    CrossRef Google Scholar

    [40] Iyer J N, Dhadke P M. Liquid-liquid extraction and separation of gallium (Ⅲ), indium (Ⅲ), and thallium (Ⅲ) by Cyanex-925[J]. Separation Science and Technology, 2001, 36(12):2773-2784. doi: 10.1081/SS-100107225

    CrossRef Google Scholar

    [41] Notoya T, Otieno-Alego V, Schweinsberg D P. The corrosion and polarization behaviour of copper in domestic water in the presence of Ca, Mg and Na-Salts of phytic acid[J]. Corrosion Science, 1995, 37(1):55-65. doi: 10.1016/0010-938X(94)00105-F

    CrossRef Google Scholar

    [42] 郑细鸣,涂伟萍.膦酸缓蚀剂的合成及其缓蚀性能研究[J].腐蚀与防护,2004,25(10):422-425. doi: 10.3969/j.issn.1005-748X.2004.10.003

    CrossRef Google Scholar

    [43] Chen W, Feng Q M, Zhang G F, et al. Investigations on flotation separation of scheelite from calcite by using a novel depressant:Sodium phytate[J]. Minerals Engineering, 2018, 126:116-122. doi: 10.1016/j.mineng.2018.06.008

    CrossRef Google Scholar

    [44] Zhu X R, Liu X H, Zhao Z W, et al. A green method for decomposition of scheelite under normal atmospheric pressure by sodium phytate[J]. Hydrometallurgy, 2020, 191:105234. doi: 10.1016/j.hydromet.2019.105234

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(2775) PDF downloads(52) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint