Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2019 Vol. 39, No. 6
Article Contents

SHANG Xi, MENG Yuhang, ZHANG Qian, YANG Huaming. Lithium Extraction and Strategic Application of Lithium-rich Minerals[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 152-158. doi: 10.13779/j.cnki.issn1001-0076.2019.06.020
Citation: SHANG Xi, MENG Yuhang, ZHANG Qian, YANG Huaming. Lithium Extraction and Strategic Application of Lithium-rich Minerals[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 152-158. doi: 10.13779/j.cnki.issn1001-0076.2019.06.020

Lithium Extraction and Strategic Application of Lithium-rich Minerals

More Information
  • With the development of global science and technology, the energy demand and consumption is sharply increased. The beneficiation and utilization of lithium riched mineral resources have received widespread attention. This review article provides the lithium resource distribution and its physical and chemical property, and discusses the progress made in its extraction method and the application of lithium-rich minerals in lithium-ion battery materials and high-performance composite materials. In summary, China's lithium resources are abundant, but the utilization level is low and can't satisfy the high-need demand. Most of high grade lithium resources depend on imports. It is urgent to develop advanced mining and extraction method and improve the comprehensive utilization level of lithium mineral resources. Furthermore, it is the key to probe new application of lithium mineral in advanced material, new energy and so on.

  • 加载中
  • [1] 王晨.试论全球锂矿资源分布与潜力分析[J].西部资源, 2018(1):7-8.

    Google Scholar

    [2] 袁小晶, 马哲, 李建武.中国新能源汽车产业锂资源需求预测及建议[J].中国矿业, 2019, 28(8):61-65.

    Google Scholar

    [3] 杨卉芃, 柳林, 丁国峰.全球锂矿资源现状及发展趋势[J].矿产保护与利用, 2019, 39(6):26-40.

    Google Scholar

    [4] Meng F, McNeice J, Zadeh S S, et al. Review of lithium production and recovery from minerals, brines, and lithium-ion batteries[J].Mineral Processing and Extractive Metallurgy Review, 2019:1-19. Doi.org/10.1080/08827508.2019.1668387. doi: 10.1080/08827508.2019.1668387

    CrossRef Google Scholar

    [5] Cardoso-Fernandes J, Teodoro A C, Lima A. Remote sensing data in lithium (Li) exploration:A new approach for the detection of Li-bearing pegmatites[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 76:10-25.

    Google Scholar

    [6] Benson T R, Coble M A, Rytuba J J, et al. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins[J].Nature Communications, 2017, 8(1):270.

    Google Scholar

    [7] 夏明, 贺彬.江西省宁都县三坑地区新发现磷锂铝石富锂矿物[J].世界有色金属, 2018(22):222-223.

    Google Scholar

    [8] 王秋舒, 元春华.全球锂矿供应形势及我国资源安全保障建议[J].中国矿业, 2019, 28(5):1-6.

    Google Scholar

    [9] 李云.某锂辉石矿浮选中组合捕收剂的试验研究及机理探讨[D].武汉: 武汉科技大学, 2019.http://cdmd.cnki.com.cn/Article/CDMD-10488-1019056275.htm

    Google Scholar

    [10] 项华妹.锂辉石电子结构及其可浮性的量子化学研究[D].赣州: 江西理工大学, 2014.http://cdmd.cnki.com.cn/Article/CDMD-10407-1015577773.htm

    Google Scholar

    [11] 胡成.太阳能热发电输热管道用堇青石-锂辉石复合陶瓷材料的研究[D].武汉: 武汉理工大学, 2017.http://cdmd.cnki.com.cn/Article/CDMD-10497-1019809129.htm

    Google Scholar

    [12] Abdullah A A, Oskierski H C, Altarawneh M, et al. Phase transformation mechanism of spodumene during its calcination[J]. Minerals Engineering, 2019, 140:105833.

    Google Scholar

    [13] 张慧婷.十二胺和油酸组合捕收剂在锂云母表面吸附的分子动力学模拟[D].赣州: 江西理工大学, 2017.

    Google Scholar

    [14] Wang B, Tang M, Wu Y C, et al. A 2D layered natural ore as a novel solid-state electrolyte[J]. ACS Applied Energy Materials, 2019, 2(8):5909-5916.

    Google Scholar

    [15] 黄斌.锂磷铝石型锂离子电池正极材料的制备及电化学性能研究[D].长沙: 中南大学, 2012.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2198160

    Google Scholar

    [16] Bogale T, Fidele M, Boris A, et al. The beneficiation of lithium minerals from hard rock ores:A review[J]. Minerals Engineering, 2019, 131:170-184.

    Google Scholar

    [17] 周园园.中国锂资源供需形势及对外依存度分析[J].资源与产业, 2019, 21(3):46-50.

    Google Scholar

    [18] Dessemond C, Lajoie-Leroux F, Soucy G, et al. Spodumene:The lithium market, resources and processes[J]. Minerals, 2019, 9(6):334.

    Google Scholar

    [19] 苏慧, 朱兆武, 王丽娜, 等.矿石资源中锂的提取与回收研究进展[J].化工学报, 2019, 70(1):10-23.

    Google Scholar

    [20] 朱一民, 谢瑞琦, 张猛.锂辉石浮选捕收剂及调整剂研究综述[J].金属矿山, 2019(2):15-21.

    Google Scholar

    [21] Wu H Q, Tian J, Xu L H, et al. Flotation and adsorption of a new mixed anionic/cationic collector in the spodumene-feldspar system[J]. Minerals Engineering, 2018, 127:42-47.

    Google Scholar

    [22] Zhu G L, Wang Y H, Wang X M, et al. States of coadsorption for oleate and dodecylamine at selected spodumene surfaces[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 558:313-321.

    Google Scholar

    [23] Tian M J, Gao Z Y, Khoso S A, et al. Understanding the activation mechanism of Pb2+ ion in benzohydroxamic acid flotation of spodumene:Experimental findings and DFT simulations[J]. Minerals Engineering, 2019, 143:106006.

    Google Scholar

    [24] Song Y F, Zhao T Y, He L H, et al. A promising approach for directly extracting lithium from α-spodumene by alkaline digestion and precipitation as phosphate[J]. Hydrometallurgy, 2019, 189:105141.

    Google Scholar

    [25] Salakjani N K, Singh P, Nikoloski A N. Production of lithium-A literature review part 1:Pretreatment of spodumene[J]. Mineral Processing and Extractive Metallurgy Review, 2019:1-14.

    Google Scholar

    [26] Salakjani N K., Singh P, Nikoloski A N. Acid roasting of spodumene:Microwave vs. conventional heating[J]. Minerals Engineering, 2019, 138:161-167.

    Google Scholar

    [27] Rosales G D, Resentera A C J, Gonzalez J A., et al. Efficient extraction of lithium from β-spodumene by direct roasting with NaF and leaching[J]. Chemical Engineering Research and Design, 2019, 150:320-326.

    Google Scholar

    [28] Guo H, Yu H Z, Zhou A A, et al. Kinetics of leaching lithium from α-spodumene in enhanced acid treatment using HF/H2SO4 as medium[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(2):407-415.

    Google Scholar

    [29] Xing P, Wang C Y, Zeng L, et al. Lithium extraction and hydroxysodalite zeolite synthesis by hydrothermal conversion of α-spodumene[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10):9498-9505.

    Google Scholar

    [30] 何明明.锂云母机械化学活化提锂工艺研究[D].北京: 中国科学院大学(中国科学院过程工程研究所), 2018.http://cdmd.cnki.com.cn/Article/CDMD-80041-1018104138.htm

    Google Scholar

    [31] Setoudeh N, Nosrati A, Welham N J. Lithium recovery from mechanically activated mixtures of lepidolite and sodium sulfate[J]. Mineral Processing and Extractive Metallurgy, 2019:1-8. Doi.org/10.1080/25726641.2019.1649112 doi: 10.1080/25726641.2019.1649112

    CrossRef Google Scholar

    [32] Su H, Ju J Y, Zhang J, et al. Lithium recovery from lepidolite roasted with potassium compounds[J]. Minerals Engineering, 2020(145):106087.

    Google Scholar

    [33] Zhang X F, Tan X M, Li C, et al. Energy-efficient and simultaneous extraction of lithium, rubidium and cesium from lepidolite concentrate via sulfuric acid baking and waterleaching[J]. Hydrometallurgy, 2019, 185:244-249.

    Google Scholar

    [34] Liu J L, Yin Z L, Li X H, et al. A novel process for the selective precipitation of valuable metals from lepidolite[J]. Minerals Engineering, 2019(135):29-36.

    Google Scholar

    [35] Liu J L, Yin Z L, Li X H, et al. Recovery of valuable metals from lepidolite by atmosphere leaching and kinetics on dissolution of lithium[J].Transactions of Nonferrous Metals Society of China, 2019, 29(3):641-649.

    Google Scholar

    [36] Guo H, Kuang G, Wan H, et al. Enhanced acid treatment to extract lithium from lepidolite with a fluorine-based chemical method[J]. Hydrometallurgy, 2019, 183:9-19.

    Google Scholar

    [37] Li J, Kong J, Zhu Q S, et al. In-situ capturing of fluorine with CaO for accelerated defluorination roasting of lepidolite in a fluidized bed reactor[J]. Powder Technology, 2019, 353:498-504.

    Google Scholar

    [38] Johnson G D, Urbani M D, Vines N J. Lithium recovery from phosphate minerals: U.S. Patent Application 15/999, 094[P]. 2019-6-20.

    Google Scholar

    [39] 劳新斌, 徐笑阳, 江伟辉, 等.Li2CO3添加量对锂辉石-莫来石复相陶瓷材料性能的影响[J].中国陶瓷, 2018, 54(11):16-22.

    Google Scholar

    [40] Wu J F, Hu C, Ping C, et al. Preparation and corrosion resistance of cordierite-spodumene composite ceramics using zircon as a modifying agent[J]. Ceramics International, 2018, 44(16):19590-19596.

    Google Scholar

    [41] Hu C, Wu J F, Xu X H, et al. Investigating the effect of andalusite on mechanical strength and thermal shock resistance of cordierite-spodumene composite ceramics[J]. Ceramics International, 2018, 44(3):3240-3247.

    Google Scholar

    [42] Wang F L, Chen X Y, Zhang W J, et al. Synthesis and characterization of borosilicate glass/β-spodumene/Al2O3 composites with low CTE value for LTCC applications[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(11):9038-9044.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(2352) PDF downloads(167) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint