Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2019 Vol. 39, No. 2
Article Contents

ZENG Yong, LIU Jian, WANG Yu, LUO Deqiang. Research Progress on the Interaction Mechanism of Typical Metal Ions with Sphalerite and Its Effect on Flotation[J]. Conservation and Utilization of Mineral Resources, 2019, 39(2): 109-117. doi: 10.13779/j.cnki.issn1001-0076.2019.02.017
Citation: ZENG Yong, LIU Jian, WANG Yu, LUO Deqiang. Research Progress on the Interaction Mechanism of Typical Metal Ions with Sphalerite and Its Effect on Flotation[J]. Conservation and Utilization of Mineral Resources, 2019, 39(2): 109-117. doi: 10.13779/j.cnki.issn1001-0076.2019.02.017

Research Progress on the Interaction Mechanism of Typical Metal Ions with Sphalerite and Its Effect on Flotation

More Information
  • Typical metal ions have a significant effect on the flotation behavior of sphalerite. The sources of metal ions in flotation pulp system are summarized. The influence of metal ions such as copper, lead, calcium, magnesium, zinc, ferric and ferrous on the flotation behavior of sphalerite and its interaction mechanism are reviewed. According to the differences between metal ionic property and the flotation environment, the effect and functionary mechanism of metal ion are also different. The analysis shows that metal ions affect the floatability of sphalerite by substitution, adsorption and covering. The application prospect of metal ions in sphalerite flotation is prospected, and the research direction of interaction mechanism between sphalerite and metal ions is pointed out.

  • 加载中
  • [1] 刘建.闪锌矿表面原子构型及铜吸附活化浮选理论研究[D].昆明: 昆明理工大学, 2013.http://cdmd.cnki.com.cn/Article/CDMD-10674-1015641661.htm

    Google Scholar

    [2] Kirjavainen V, Schreithofer N, Heiskanen K. Effect of calcium and thiosulfate ions on flotation selectivity of nickel-copper ores[J]. Minerals engineering, 2002, 15(1):1-5.

    Google Scholar

    [3] Dávila-Pulido G, Uribe-Salas A, álvarez-Silva M, et al. The role of calcium in xanthate adsorption onto sphalerite[J]. Minerals engineering, 2015, 71:113-119. doi: 10.1016/j.mineng.2014.09.004

    CrossRef Google Scholar

    [4] Kartio I J, Basilio C I, Yoon R H. An XPS study of sphalerite activation by copper[J]. Langmuir, 1998, 14(18):5274-5278. doi: 10.1021/la970440c

    CrossRef Google Scholar

    [5] Sarvaramini A, Larachi F, Hart B. Collector attachment to lead-activated sphalerite-experiments and DFT study on pH and solvent effects[J]. Applied surface science, 2016, 367:459-472. doi: 10.1016/j.apsusc.2016.01.213

    CrossRef Google Scholar

    [6] 胡熙庚.有色金属硫化矿选矿[M].北京:冶金工业出版社, 1987.

    Google Scholar

    [7] Huston D L, Sie S H, Suter G F, et al. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part Ⅰ, proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part Ⅱ, selenium levels in pyrite; comparison with delta 34 S values and implications for the source of sulfur in volcanogenic hydrothermal systems[J]. Economic geology, 1995, 90(5):1167-1196. doi: 10.2113/gsecongeo.90.5.1167

    CrossRef Google Scholar

    [8] 陈建华, 曾小钦, 陈晔, 等.含空位和杂质缺陷的闪锌矿电子结构的第一性原理计算[J].中国有色金属学报, 2010, 20(4):765-71.

    Google Scholar

    [9] Basilio C I, Kartio I J, Yoon R H. Lead activation of sphalerite during galena flotation[J]. Minerals engineering, 1996, 9(8):870-879.

    Google Scholar

    [10] 黄福根, 肖鹂.方铅矿浮选时闪放的铅活化[J].国外选矿快报, 1997(16): 7-12.

    Google Scholar

    [11] Liu J, Wen S, Wu D, et al. Determination of the concentrations of calcium and magnesium released from fluid inclusions of sphalerite and quartz[J]. Minerals engineering, 2013, 45(3):41-43.

    Google Scholar

    [12] Deng J, Mao Y, Wen S, et al. New influence factor inducing difficulty in selective flotation separation of Cu-Zn mixed sulfide minerals[J]. International journal of minerals, metallurgy, and materials, 2015, 22(2):111-115. doi: 10.1007/s12613-015-1050-x

    CrossRef Google Scholar

    [13] Bai S, Wen S, Xian Y, et al. New source of unavoidable ions in galena flotation pulp: components released from fluid inclusions[J]. Minerals engineering, 2013, 45:94-99. doi: 10.1016/j.mineng.2013.02.001

    CrossRef Google Scholar

    [14] Deng J, Wen S, Xian Y, et al. New discovery of unavoidable ions source in chalcopyrite flotation pulp: fluid inclusions[J]. Minerals engineering, 2013, 42:22-8. doi: 10.1016/j.mineng.2012.10.010

    CrossRef Google Scholar

    [15] Deng J, Wen S, Wu D, et al. Existence and release of fluid inclusions in bornite and its associated quartz and calcite[J]. International journal of minerals metallurgy & materials, 2013, 20(9):815-822.

    Google Scholar

    [16] 孙昊, 孙体昌, 朱阳戈, 等.水质对十二酸浮选分离菱镁矿与白云石的影响研究[J].有色金属(选矿部分), 2017(5):89-92. doi: 10.3969/j.issn.1671-9492.2017.05.020

    CrossRef Google Scholar

    [17] Ikumapayi F, Makitalo M, Johansson B, et al. Recycling process water in sulphide flotation: effect of calcium and sulphate on sphalerite recovery[J]. Minerals engineering, 2012, 29(4):45-64.

    Google Scholar

    [18] 钟素姣.磨矿对方铅矿和闪锌矿浮选行为的影响研究[D].长沙: 中南大学, 2006.http://d.wanfangdata.com.cn/Thesis/Y997676

    Google Scholar

    [19] Grano S. The critical importance of the grinding environment on fine particle recovery in flotation[J]. Minerals engineering, 2009, 22(4): 386-394. doi: 10.1016/j.mineng.2008.10.008

    CrossRef Google Scholar

    [20] 黄凌云.闪锌矿晶体结构性质及其铜活化作用[J].矿产保护与利用, 2018(3):26-30.

    Google Scholar

    [21] Sun S, Liu R, Song W. An electrochemical investigation on collectorless flotation of sphalerite in presence of Cu2+ ions[J]. Trans. nonferrous met. soc. China, 2000, 10(S1):56-60.

    Google Scholar

    [22] Ravitz S F, Wall W A. The adsorption of copper sulfate by sphalerite and its relation to flotation[J]. J. phys. chem., 2002, 38(1):13-18.

    Google Scholar

    [23] 李宁.铜锌硫化矿浮选分离研究[D].长沙: 中南大学, 2012.http://cdmd.cnki.com.cn/Article/CDMD-10533-1012477129.htm

    Google Scholar

    [24] 聂光华, 李帅, 邱盛华.某铁闪锌矿浮选试验研究[J].矿冶工程, 2012, 32(4):44-47. doi: 10.3969/j.issn.0253-6099.2012.04.012

    CrossRef Google Scholar

    [25] Buckley A N, Woods R, Wouterlood H J. An XPS investigation of the surface of natural sphalerites under flotation-related conditions[J]. International journal of mineral processing, 1989, 26(1-2):29-49. doi: 10.1016/0301-7516(89)90041-0

    CrossRef Google Scholar

    [26] Finkelstein N P. The activation of sulphide minerals for flotation: a review[J]. International journal of mineral processing, 1997, 52(2-3):81-120. doi: 10.1016/S0301-7516(97)00067-7

    CrossRef Google Scholar

    [27] Gerson A R, Lange A G, Prince K E, et al. The mechanism of copper activation of sphalerite[J]. Applied surface science, 1999, 137(1-4):207-223. doi: 10.1016/S0169-4332(98)00499-1

    CrossRef Google Scholar

    [28] Gu G, Wang D, Liu R. Electrochemical mechanisms on cupric sulphate activating sphalerite[J]. Journal of central south university of technology, 1999, 30(4):374-377.

    Google Scholar

    [29] Ejtemaei M, Nguyen A V. Characterisation of sphalerite and pyrite surfaces activated by copper sulphate[J]. Minerals engineering, 2017, 100:223-232. doi: 10.1016/j.mineng.2016.11.005

    CrossRef Google Scholar

    [30] Laskowski J S, Liu Q, Zhan Y. Sphalerite activation: flotation and electrokinetic studies[J]. Minerals engineering, 1997, 10(8):787-802. doi: 10.1016/S0892-6875(97)00057-5

    CrossRef Google Scholar

    [31] 谢广元, 张明旭, 边炳鑫.选矿学[M].徐州:中国矿业大学出版社, 2001.

    Google Scholar

    [32] Chandra A P, Gerson A R. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite[J]. Adv colloid interface sci, 2009, 145(1):97-110.

    Google Scholar

    [33] Boulton A B, Fornasiero D, Ralston J. Characterisation of sphalerite and pyrite flotation samples by XPS and ToF-SIMS[J]. International journal of mineral processing, 2003, 65(1):205-219.

    Google Scholar

    [34] Ralston O C, King C R, Tartaron F X. Copper sulfate as flotation activator for sphalerite[J]. Trans. AIME, 1930, 87:389-400.

    Google Scholar

    [35] Liu J, Zeng Y, Luo D, et al. Ab initio molecule dynamic simulation of Cu(OH)2 interaction with sphalerite (1 : 1 : 0) surface[J]. Minerals engineering, 2018, 122:176-178. doi: 10.1016/j.mineng.2018.04.003

    CrossRef Google Scholar

    [36] Fuerstenau D W, Metzger P H. Activation of sphalerite with lead ions in the presence of zinc salts[J]. Minerals engineering, 1960, 217:119-123.

    Google Scholar

    [37] Popov S R, Vuini D R, Kaanik J V. Floatability and adsorption of ethyl xanthate on sphalerite in an alkaline medium in the presence of dissolved lead ions[J]. International journal of mineral processing, 1989, 27(3-4):205-219. doi: 10.1016/0301-7516(89)90065-3

    CrossRef Google Scholar

    [38] Trahar W J, Senior G D, Heyes G W, et al. The activation of sphalerite by lead a flotation perspective[J]. International journal of mineral processing, 1997, 49(3-4):121-148. doi: 10.1016/S0301-7516(96)00041-5

    CrossRef Google Scholar

    [39] Pattrick R A D, Charnock J M, England K E R, et al. Lead sorption on the surface of ZnS with relevance to flotation: a fluorescence reflexafs study[J]. Minerals engineering, 1998, 11(11):1025-33. doi: 10.1016/S0892-6875(98)00090-9

    CrossRef Google Scholar

    [40] Steele H M, Wright K, Hillier I H. A quantum-mechanical study of the (110) surface of sphalerite (ZnS) and its interaction with Pb2+ species[J]. Physics and chemistry of minerals, 2003, 30(2):69-75. doi: 10.1007/s00269-002-0296-9

    CrossRef Google Scholar

    [41] Morey M S, Grano S R, Ralston J, et al. The electrochemistry of Pb Ⅱ activated sphalerite in relation to flotation[J]. Minerals engineering, 2001, 14(9):1009-1017. doi: 10.1016/S0892-6875(01)00108-X

    CrossRef Google Scholar

    [42] Rashchi F, Sui C, Finch J A. Sphalerite activation and surface Pb ion concentration[J]. International journal of mineral processing, 2002, 67(1):43-58.

    Google Scholar

    [43] Sui C, Lee D, Casuge A, et al. Comparison of the activation of sphalerite by copper and lead[J]. Minerals engineering, 1999, 16(3):53-61.

    Google Scholar

    [44] Zhang Q, Rao S R, Finch J A. Flotation of sphalerite in the presence of iron ions[J]. Colloids & surfaces, 1992, 66(2):81-89.

    Google Scholar

    [45] 童雄, 周庆华, 何剑, 等.铁闪锌矿的选矿研究概况[J]. 2006(6): 8-12.

    Google Scholar

    [46] Chen Y, Chen J, Guo J. A DFT study on the effect of lattice impurities on the electronic structures and floatability of sphalerite[J]. Minerals engineering, 2010, 23(14):1120-1130. doi: 10.1016/j.mineng.2010.07.005

    CrossRef Google Scholar

    [47] Ye C, Chen J, Lan L, et al. The influence of the impurities on the flotation behaviors of synthetic ZnS[J]. Minerals engineering, 2012, 27-28(1):65-71.

    Google Scholar

    [48] Liu J, Wang Y, Luo D, et al. Comparative study on the copper activation and xanthate adsorption on sphalerite and marmatite surfaces[J]. Applied surface science, 2018, 439:263-271. doi: 10.1016/j.apsusc.2018.01.032

    CrossRef Google Scholar

    [49] Chen Y, Chen J. The first-principle study of the effect of lattice impurity on adsorption of CN- on sphalerite surface[J]. Minerals engineering, 2010, 23(9):676-684. doi: 10.1016/j.mineng.2010.04.002

    CrossRef Google Scholar

    [50] Solecki J, 詹德俊.铜离子对不同铁含量混合闪锌矿的活化作用[J].国外金属矿选矿, 1982(1):19-22.

    Google Scholar

    [51] Szczypa J, Solecki J, Komosa A. Effect of surface oxidation and iron contents on xanthate ions adsorption of synthetic sphalerites[J]. International journal of mineral processing, 1980, 7(2):151-157. doi: 10.1016/0301-7516(80)90007-1

    CrossRef Google Scholar

    [52] Scott J L, Smith R W. Calcium ion effects in amine flotation of quartz and magnetite[J]. Minerals engineering, 1993, 6(12):1245-1255. doi: 10.1016/0892-6875(93)90102-S

    CrossRef Google Scholar

    [53] Liu Q, Zhang Y. Effect of calcium ions and citric acid on the flotation separation of chalcopyrite from galena using dextrin[J]. Minerals engineering, 2000, 13(13):1405-1416. doi: 10.1016/S0892-6875(00)00122-9

    CrossRef Google Scholar

    [54] Zhang W, Honaker R Q, Groppo J G. Flotation of monazite in the presence of calcite part Ⅰ: calcium ion effects on the adsorption of hydroxamic acid[J]. Minerals engineering, 2017, 100:40-48. doi: 10.1016/j.mineng.2016.09.020

    CrossRef Google Scholar

    [55] Ejtemaei M, Plackowski C, Nguyen A V. The effect of calcium, magnesium, and sulphate ions on the surface properties of copper activated sphalerite[J]. Minerals engineering, 2016, 89: 42-51. doi: 10.1016/j.mineng.2016.01.005

    CrossRef Google Scholar

    [56] Lascelles D, Finch J A, Sui C. Depressant action of Ca and Mg on flotation of Cu activated sphalerite[J]. Canadian metallurgical quarterly, 2013, 42(2):133-140.

    Google Scholar

    [57] 孙伟, 胡岳华, 邱冠周, 等.闪锌矿(110)表面离子吸附的动力学模拟[J].中国有色金属学报, 2002, 12(1):187-190. doi: 10.3321/j.issn:1004-0609.2002.01.037

    CrossRef Google Scholar

    [58] Liu J, Wang Y, Luo D, et al. Use of ZnSO4, and SDD mixture as sphalerite depressant in copper flotation[J]. Minerals engineering, 2018, 121:31-38. doi: 10.1016/j.mineng.2018.03.003

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(1)

Article Metrics

Article views(1675) PDF downloads(20) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint